Две стороны параллелограмма заданы уравнениями 2x-y+5=0 (это прямая АВ) и x-2y+4=0 (это прямая АД), его диагонали пересекаются в точке О(1,4). Найти длины его высот.
Находим координаты точка А как точки пересечения сторон.
2x-y+5=0 |x(-2) -4x+2y-10=0
x-2y+4=0 x-2y+4=0
-3x - 6 = 0,
x(A) = -6/3 = -2,
y(A) = 2x - 5 = 2*(-2) + 5 = 1.
Находим точку С как симметричную точке А относительно точке пересечения диагоналей (это точка О).
х(С) = 2х(О) - х(А) = 2*1 - (-2) = 4,
у(С) = 2у(О) - у(А) = 2*4 - 1 = 7.
Через точку С проводим прямую, параллельную АД.
Выражаем уравнение АД относительно у: у(АД) = (1/2)х + 2.
Угловой коэффициент параллельной прямой сохраняется.
у(ВС) = (1/2)х + в. Подставим координаты точки С.
7 = (1/2)*4 + в, откуда находим в = 7 - 2 = 5.
Уравнение ВС: у = (1/2)х + 5.
Находим координаты точки В кк точки пересечения АВ и ВС.
2х + 5 = (1/2)х + 5, отсюда следует х = 0, у = 5.
Координаты точки Д находим как симметричную точке В относительно точки О: х(Д) = 2*1 - 0 = 2, у(Д) = 2*4 - 5 = 3.
Находим длины сторон.
AB (c) = √((xB-xA)² + (yB-yA)²) = 20 4,472135955
BC (a) = √((xC-xB)² + (yC-yB)²) = 20 4,472135955
CD = √((xD-xC)² + (yD-yC)²) = 20 4,472135955
AD = √((xC-xA)² + (yC-yA)²) = 20 4,472135955 .
Находим длины диагоналей.
AC = √((xC-xA)² + (yC-yA)²) = 72 8,485281374
BD = √((xD-xB)² + (yD-yB)²) = 8 2,828427125 .
Как видим, это ромб.
Его площадь S = (1/2)*AC*BD = (1/2)*V72*V8 = 12.
Высоты равны h = S/a = 12/V20 = 12/(2V5) = 6V5/5.
Сделаем рисунок и обозначим вершины пирамиды АВСА1В1С1. Ребро ВВ1⊥АВС=1 см
Площадь боковой поверхности этой пирамиды - сумма площадей трех трапеций: двух прямоугольных и одной равнобедренной - той, что противолежит ребру ВВ1.
В основаниях пирамиды правильные треугольники - следовательно, длины средней линии всех трапеций равны 0,5•(3+5)=4 см
Площадь прямоугольных граней равна произведению их средней линии на длину высоты пирамиды, т.е. .
S (АВВ1А1)=S (ВВ1С1С)= 4•1=4 см²
Чтобы найти высоту грани АА1С1С, проведем в основаниях пирамиды высоты ВН и В1К и соединим К и Н.
Плоскость прямоугольной трапеции ВНКВ1 перпендикулярна плоскости оснований, т.к. содержит в себе отрезок ВВ1, перпендикулярный обоим основаниям.
Из К опустим высоту КТ.
КН по теореме о трех перпендикулярах перпендикулярна АС и является высотой трапеции АСС1А1.
В прямоугольном треугольнике КТН катет КТ=ВВ1=1см, катет НТ равен разности высот оснований пирамиды.
ВК=(3√3):2
BH=(5√3):2
ТН=2√3):2=√3 см
КН=√(КТ²+НТ²)=√4=2 см
S (АСС1А1)=4*2=8 см²
S(бок)=4+4+8=16 см²
Поделитесь своими знаниями, ответьте на вопрос:
Пряма аs перпендикулярна до площини квадрата авсd.знайдіть довжину відрізка sb, якщо sc=10см, dc=6см
SB, SC, SD - наклонные
SB_|_BC по теореме о трёх перпендикулярах(SB - наклонная, АВ - проекция наклонной, ВС - прямая перпендикулярная проекции наклонной проведенная через основание наклонной)
ΔSBC: SC=10 см, BC=6 см, <SBC=90°
по теореме Пифагора:
SC²=SB²+BC²
10²=SB²+6², SB=8 см