Dubovitskayae
?>

Найти расстояние от точки пересечения медиан треугольника до его вершин, если стороны треугольника равны 5, 6 и 8

Геометрия

Ответы

Sonyamaslo6
Длина медианы определяется по формуле:
ma= \frac{1}{2} \sqrt{2b^2+2c^2-a^2}.
Подставив значения сторон, получаем длины медиан:
a b c
5 6 8
     ма             мв                мс
6.61438       5.95819       3.80789.
Медианы треугольника пересекаются в одной точке и делятся точкой пересечения в отношении 2:1, считая от вершины.
Деление медиан точкой пересечения:
              ма                            мв                              мс
      АО         ОД             ВО            ОЕ            СО         ОК
4.40959    2.20479     3.972125    1.98606     2.5386     1.2693.
amayonova

делит на части длиной 6 и 12 см

 

нужны дополнительные построения

продливаем отрезок DM до пересечения со стороной параллелограмма ВС. Пусть точка пересечения будет Е. Тогда треугольники АМD  и ВМЕ равны по второму признаку равенства теугольников (по стороне и прилежащим к ней углам - по условию сторона МВ равна МА,углы ЕМВ и DMA  - вертикальные,а угол МDA равен углу MEВ как вертикальные углы при параллельных прямых ЕС и АД.Следовательно, сторона АD равна стороне ЕВ,а так как в параллелограмме противолежащие стороны равны,то получаем равенство АД=ВС=ЕВ  )

Обозначим точку пересечения отрезков ДМ и АС как К. Тогда треугольники АКД и СКЕ - подобны по первому признаку подобия (по двум углам - углы АКД и  СКЕ - вертикальные,а уголы  АДК и КЕС - вертикальные   ),следовательно,если треугольники подобны,то можем записать соотношение сторон:

 

АК/CK=AD/EC,так как ЕС =ЕВ+ВС,получим

АК/CK=AD/(ЕВ+ВС)    (1)

 

Пусть сторона АД будет х, а отрезок АК будетт у,тогда запишем равенство  АД=ВС=ЕВ=х,а КС =18-у (по условию задачи).

 

Теперь запишем уравнение (1) в таком виде

 

у /(18-у) = х/2х,так как х больше ноля (длина отрезка не может быть отрицательной),то правую часть уравнения можн сократить на х.

получаем

у /(18-у) = 1/2

у=6

 

АК=6, КС =18-у=18-6=12

 

 

 

 

 

 

Сергей_Комарова899
1:
тр АВС - (уг С=90*)
СН - высота
ВС=16 см
АВ = 20 см
Найти:
НВ - ?

Решение:
1) По т Пифагора  к тр АВС: АС² = АВ²-ВС²;  АС²=400-256 = 144; АС = 12 см
2) Пусть НВ = х (см), тогда АН=(20-х) см. Выразим катет НС из прямоугольных треугольников АНС и ВНС, в которых уг Н =90*. Получим уравнение:
144-(20-х)² = 256-х²
144-400+40х-х²=256-х²
-256+40х=256
40х=512
х=512 : 40
х=12,8 (см) - проекция НВ катета ВС на гипотенузу АВ                                                                                                                            2

Рассмотрим: АБС АБ=41 см АС=9 см АБ'=АС' + ВС' ( по т. Пифагора) ВС'=АБ' - АС' ВС' = 41' - 9' ВС'= 1681-81 ВС'=1600 ВС=40 см Р=АБ+БС+АС=41+40+9=90 см ('=в квадрате) ответ: Р=90 см.
3
т.к. диагонали ромба, пересекаясь, обазуют угол в 90 градусов и делятся пополам, то ром делится на 4 одинаковых прямоугольных треугольника. рассмотрим один из них.
сторона ромба будет являться гипотенузой, тогда найдем ее по теореме пифагора: корень из (8*8+4*4)=4 корня из 54
Если известны все стороны трапеции, можно найти диагональ по формуле: d=√(c²+ab), где a  и b - основания, с - боковая сторона.Пусть дана трапеция АВСД - равнобедренная. АД=21 см, ВС=11 см.АВ=СД=13 смАС=√(АВ²+ВС*АД)=√(13²+11*21)=√(169+231)=√400=20 см.ответ: 20 см.

5

х-наклонная у-наклонная , у=х+7h-высота от точки до прямойh=√x²-6² , иh=√(x+7)²-15²
(√х²-6)=(√(х+7)²-15²)) , возведем обе части ур-я в квадратх²-6²=(х+7)²-15²х²-36=х²+14х+49-22514х=140х=10 сму=10+7=17 см

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найти расстояние от точки пересечения медиан треугольника до его вершин, если стороны треугольника равны 5, 6 и 8
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

ЕленаАлександровна381
rakitinat8
ViktorovnaKraeva634
mbobo28311
srvsm
premiumoft
ПетровичЖивотовская1245
Yumashev
Burov1446
iordanekaterina
ritckshulga20112
skorpion7228528
Anastasiya Yevseeva948
Борисовна
TatarkovTitova