AD = 30
Объяснение:
Задание
На рисунке углы C и E равны 90°.
Найти АD, если известно, что АE = 18, , EC = 33, DB = 55.
Решение
1) Так как ВС и DE перпендикулярны АС, то ВС║DE, и треугольник АDE подобен треугольнику АВС.
2) Из подобия треугольников следует, что:
АС : АЕ = АВ : АD (1)
АС = АЕ + ЕС = 18 + 33 = 51
Пусть AD = х, тогда
АВ = DB+ AD = 55 + х
Тогда (1) можно представить в виде:
51 : 18 = (55+х) : х (2)
3) Согласно основному свойству пропорции, произведение средних равно произведению крайних, поэтому из (2) следует, что:
51 х = 18·55 + 18х
33х = 990
х = 990 : 33 = 30
AD = 30
ответ: AD = 30
По теореме:. Если прямая (ВС), не лежащая в данной плоскости (сечения), параллельна какой-нибудь прямой (МК), лежащей в этой плоскости, то она параллельна самой плоскости. Проведем МК║ВС и получим линию пересечения плоскостей грани и сечения.
На грани АDC теперь есть вторая точка, принадлежащая линии пересечения плоскости сечения и грани. Соединим их.Поделитесь своими знаниями, ответьте на вопрос:
При пересечении двух прямых образовалось четыре угла один из них больше другого на 18 градусов найдите величину каждого из четырех углов решить уравнением
2х+18=180
2х=162
х=81,
следовательно два угла равны 81, два других 81+18=99