Прямая АЕ делит площадь параллелограмма ABCD в отношении 3:13.
Объяснение:
Треугольники BEF и AFD подобны по двум углам (∠AFD и ∠BFE - вертикальные, ∠BEF и ∠EAD - внутренние накрест лежащие при параллельных AD и BC и секущей АЕ. Коэффициент подобия
k = 3/8.
Следовательно, ВЕ/AD = 3/8 (соответственные стороны).
Площади треугольников АВЕ и ABD относятся как их основания (эти треугольники имеют одну высоту АН).
Итак, Sabe/Sabd = 3/8. Но Sabd = (1/2)*Sabcd, так как диагональ BD делит площадь параллелограмма пополам (свойство). Тогда Sabe/Sabсd = Sabe/(2*Sabd) = 3/16.
Sabe = (3/16)*Sabсd => Saeсd = 1 - 3/16 = (13/16)*Sabcd и
Sabe/Saесd = (3/16):(13/16) = 3/13.
Прямая АЕ делит площадь параллелограмма ABCD в отношении 3:13.
Поделитесь своими знаниями, ответьте на вопрос:
Впрямоугольном треугольнике abc (угол c = 90 градусов) биссектрисы cd и ae пересекаются в точке o. угол aoc =105 градусов. найдите острые углы треугольника abc.
угол OCA=45
CAO=30 ,т.к. в треуг. сумма углов = 180. Угол А=60, угол В = 30,т.к. в треуг. сумма углов = 180.
ответ:30 и 60