Ромб ABCD перегнули по его большей диагональю BD так, что плоскости ABD и CBD оказались перпендикулярными, а расстояние между точками A и C стала равна 4√2 см. Найдите длину сторона ромба, если тупой угол ромба равен 120°
Объяснение:
Пусть точка пересечения диагоналей О. По свойству диагоналей ромба АО=ОС и ∠ВСО=∠DСО=120°:2=60°
1)Т.к. плоскости ABD и CBD оказались перпендикулярными , то ∠АОС=90°
ΔАОС-прямоугольный , равнобедренный , АО=ОС=х ,АС=4√2 см.
По т. Пифагора х²+х²=(4√2)² , 2х²=16*2 ,х=4 , АО=ОС=4 см.
2) ΔВОС -прямоугольный (диагонали ромба взаимно-перпендикулярны). ∠ОВС=90°-60°=30°. По свойству угла в 30° , ВС=8см. Сторона ромба 8 см.
Поделитесь своими знаниями, ответьте на вопрос:
На сторонах ac и ab треугольника abc отмечены соответственно точки b1 и c1. известно, что ab1=4см, b1c=17см, ac1=7см, cb1=5см. докажите, что треугольники авс и ab1c1 подобны
AB1C1 , прилежащих к общему углу A:
AB/AB1=5+7/3=12/3=4
AC/AC1=3+17/5=20/5=4
Отсюда
AB/AB1=AC/AC1
Следовательно, две стороны треугольника ABC пропорциональны
соответствующим сторонам треугольника AB1C1 , а угол A между ними
общий. Значит, треугольники ABC и AB1C1 подобны.