Если катет и противолежащий острый угол одного прямоугольного треугольника соответственно равны катету и противолежащему острому углу другого прямоугольного треугольника, то такие треугольники равны.
В прямоугольном треугольнике катету противолежит острый угол ( прямой противолежит гипотенузе) и сумма острых углов 180°-90°=90°.
Поэтому: если противолежащий катету острый угол одного прямоугольного треугольника равен противолежащем острому углу другого, то прилежащие к равным катетам острые углы также равны
К равным катетам этих треугольников прилежат равные углы: прямой ( по условию) и найденный острый.
Такие прямоугольные треугольники равны по 2-му признаку равенства треугольников, т.е. по стороне и прилежащим к ней углам.
Поделитесь своими знаниями, ответьте на вопрос:
Восновании прямого параллелепипеда лежит ромб со стороной 6дм и острым углом в 60 градусов. найдите объём параллелепипеда, если его меньшая диагональ образует с плоскостью основания угол в 60 градусов.
Так как диагональ ВД делит ромб на два равнобедренных тр-ка, а острый угол ромба равен 60°, то тр-ки АВД и СВД - правильные. ВД=АВ=6 дм.
Площадь основания: S=АВ²·sin60=8√3 дм².
В тр-ке ВДВ1 ВВ1=ВД·tg60=6√3 дм.
Объём параллелепипеда:
V=SH=S·ВВ1=6√3·4√3=96 дм³.