О. Карпов1691
?>

Из точки вне окружности проведена касательная длиной 20 см. найдите радиус окружности если расстояние от точки до окружности равно 10 см

Геометрия

Ответы

tanias
Соединим точку с центром окружности. Тогда отрезок от точки до точки пересечения окружности есть расстояние до окружности. Проведем радиус к точке касания. По определению он перпендикулярен касательной. Имеем прямоугольный треугольник, в котором катеты - это касательная (20 см) и радиус R, а гипотенуза - расстояние от точки касания к окружности (10 cм)+радиус R.
По теореме Пифагора имеем
20²+R²=(10+R)²  ⇒  400+R²=100+20R+R²  ⇒  20R=300  ⇒  R=15
Шуршилина_Ильич

Здравствуйте!

1).

∠1+∠2=180° смежные

∠1=2∠2 по условию

2∠2+∠2=180°

3∠2=180°

∠2=60°

∠1=2∠2=120°

2). Треугольники OBC и AOD равны по двум сторонам и углу между ними (AO=OB; CO=OD по условию; ∠СОВ=AOD -вертикальные) => ∠BCO=∠ABO как соответственные углы в равных треульниках.

AD || BC, т.к. накрест лежащие углы (∠BCO=∠ABO) равны. ЧТД.

3).

AB+AC+BC=34 см. (периметр)

AB=AC (боковые стороны)

BC (основание) =АВ+2 см= АС+ 2 см

BC+ (BC + 2 см)+(ВС+2 см) =34 см

3 ВС=30 см

ВС= 10 см

АВ=АС=10 см +2 см= 12 см

4). Треугольники АОВ и DOC равны по стороне и двум прилежащим углам (АО=ОD; ∠A=∠D по условию; ∠AOB=DOC вертикальные)

5). Проведем отрезок BD. Треугольники ABD и BDC- равнобедренные (AB=AD; BC=CD по условию) => ∠АВD=∠ADB и ∠CBD=∠CDB как углы при основании в р/б треугольнике.

∠В=∠АBD+∠CBD

∠D=∠ADB+∠CDB

А так как ∠АВD=∠ADB и ∠CBD=∠CDB, то ∠В=∠D.

6). Сумма острых углов прямогульного треугольника равна 90°.

∠A+∠B=90°

∠B=∠A-60° по условию

∠A+∠A-60°=90°

2∠A=150°

∠A=75°

∠B=∠A-60°=75°-60°=15°

7). Найдем ∠B. Сумма углов треугольника равна 180°.

∠А+∠В+∠С=180°

70°+55°+∠B=180°

∠B=180°-125°

∠B=55°

То есть ∠В=∠С=55°. А если углы в треуголнике равны, то треугольник равнобедренный. Основание BC.

7.1). Рассмотрим треугольник BMC. Он прямоугольный. Сумма острых углов прямоугольного треугольника равна 90°.

∠С+∠МBC=90°

55°+∠MBC=90°

∠MBC=35°

∠ABC=∠ABM+∠MBC

55°=∠ABM+35°

∠ABM=20°

stairov536

1) Чтобы найти координаты вектора AС, зная координаты его начальной точки А и конечной точки С, необходимо из координат конечной точки вычесть соответствующие координаты начальной точки. То есть:

AС = (Сx - Ax; Сy - Ay) = (5 - 1; -2 - (-2)) = (4; 0).

Таким же найдем координаты вектора ВА:

BA = (Ax - Bx; Ay - By) = (1 - 3; -2 - 6) = (-2; -8).

2) Точка М расположена на отрезке ВС и делит его пополам, следовательно, для поиска координат точки М необходимо определить координаты отрезка ВС и разделить их пополам, то есть:

М = ВС / 2 = (Сx + Bx; Сy + By) / 2 = ((Сx + Bx) / 2; (Сy + By) / 2) = ((5 + 3) / 2; (-2 + 6) / 2) = (8 / 2; 4 / 2) = (4; 2).

Для вычисления длины отрезка воспользуемся формулой вычисления расстояния между двумя точками A (xa; ya) и B (xb; yb):

AB = √(( xb - xa)^2 + (yb - ya)^2).

Подставим значения точки А (1; -2) и М (4; 2) в формулу:

AM = √((4 - 1)^2 + (2 - (-2))^2) = √(3^2 + 4^2) = √(9 + 16) = √25 = 5.  

ответ: координаты вектора АС (4; 0), вектора ВА (-2; -8), координаты точки М (4; 2), длина отрезка АМ = 5.

Объяснение:

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Из точки вне окружности проведена касательная длиной 20 см. найдите радиус окружности если расстояние от точки до окружности равно 10 см
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

zipylin
buhtovarish
hachatryanlilit1983
terehin863
lukur2005
hacker-xx1
kapustina198690
Самохвалова-Геннадьевна
Роман1406
razumeiko0790
lubavarif83
zorinka777
porotikova1004
supercom-ru-marinaguseva4267
s9152992722344