Построим прямоугольный треугольник АВС (угол А= 90 градусов, угол С=60 градусов).
Сумма углов треугольника равна 180 градусам. Зная это найдем угол В:
В=180-(А+С)=180-(90+60)=30 градусов.
Так как против меньшей стороны треугольника лежит меньший угол то меньшим катетом треугольника АВС будет сторона АС (В<С<А)
Катет, лежащий против угла 30 градусов равен половине гипотенузы.
Пусть катет АС=х см. Тогда гипотенуза ВС=2х см. Получаем уравнение:
х+2х=21
3х=21
х=21/3
х=7
Катет АС=7 см.
Гипотенуза ВС=2*7=14 см.
Поделитесь своими знаниями, ответьте на вопрос:
Основание ac равнобедренного треугольника abc равно 12. окружность радиуса 8 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания ac в его середине. найдите радиус окружности, вписанной в треугольник abc.
СО - биссектриса и делит угол НСК пополам. .
Центр окружности, вписанной в треугольник АВС, лежит в точке пересечения биссектрис. ВН и СО₁- биссектрисы.
СО₁ делит угол ВСН пополам.
АСК - развернутый угол и равен 180º
Сумма половин углов АСН и ОСН равна половине развернутого угла.
Угол ОСО₁=180°:2=90°⇒
∆ ОСО₁ - прямоугольный с прямым углом С.
АН - высота и медиана равнобедренного треугольника АВС, следовательно, делит основание АС на два равных отрезка:
СН=АН=6.
СН ⊥ АН⇒ является высотой треугольника ОСО₁.
Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой;⇒
СН²=ОН•HO₁
36=8 HO₁
HO₁=36/8=4,5 (ед. длины)