s-laplandia6
?>

На сторонах ав і ас трикутника авс позначено точки м і к відповідно, мв=6см, ак=4см, ас=18см, ам=10см. знайдіть площу чотирикутника мвск, якщо площа трикутника мак дорівнює 15 см^2.

Геометрия

Ответы

titovass9
Посмотрите рисунок с решением
На сторонах ав і ас трикутника авс позначено точки м і к відповідно, мв=6см, ак=4см, ас=18см, ам=10с
Borshchev1820
Треугольники SCD и SAB - прямоугольные и центр описанной около них  окружности лежит в центре их общей гипотенузы SB.
Следовательно, центр шара , описанного вокруг пирамиды SABC лежит в этой  же точке и радиус его равен половине ребра SB. Ребро SB найдем по  Пифагору: SB=√(L²+b²).
Значит OA=OC=OB=OS=Rш=(1/2)√(L²+b²), а его объем равен Vш=(4/3)*πR³ или
Vш=(4/3)*(1/8)π(L²+b²)√(L²+b²)=(1/6)*(L²+b²)√(L²+b²).  (ответ).
Найдем объем пирамиды.
Опустим перпендикуляр SH из точки S на плоскость АВС. Основание этого  перпендикуляра Н попадет на прямую НВ в плоскости АВС вне треугольника  АВС. (То есть грань ASC не перпендикулярна плоскости основания).  Чтобы найти точку Н, надо в плоскости АВС провести перпендикуляры к  сторонам АВ и СВ в точки А и С. Их пересечение и даст нам искомую точку Н, в которую  проецируется вершина S пирамиды, так как по теореме, обратной теореме о  трех перпендикулярах, "прямая, проведенная в плоскости через основание  наклонной перпендикулярно к ней, перпендикулярна и к её проекции". Значит  SH - искомая высота. В равнобедренном треугольнике АВС отрезок ВР - высота,  биссектриса и медиана этого треугольника.
Тогда в прямоугольном треугольнике ВАН угол <ABH=(β/2), а гипотенуза  НВ=b/Cos(β/2). В прямоугольном треугольнике SHB по Пифагору катет SH=√ (SB²-HB²) или
SH=√[(√(L²+b²))²-(b/Cos(β/2))²]=√[(L²+b²)-(b²/Cos²(β/2)]
Объем пирамиды Vп=(1/3)*So*H. Или
Vп=(1/3)*b²Sinβ/2*√[(L²+b²)-(b²/Cos²(β/2)]. Или
Vп=(1/6)*b²Sinβ*√[(L²+b²)-(b²/Cos²(β/2)].  (ответ).

Проверим решение на конкретных числах.
Пусть b=4, L=3, β=60.
Тогда SB=√(L²+b²)=5.
PB=√(16+4)=√12=2√3.
AH=4√3/3,  SH=√(9-48/9)=√33/3. (первый вариант).
HP=2√3/3,  SP=√(L²-CP²)=√5.
SH=√(SP²-HP²)=√(5-12/9)= √33/3 (второй вариант).
HB=HP+PB=8√3/3.
SH=√(SB²-HB²)=√(25-199/9)=√33/3. (третий вариант).
Из моего решения:
SH=√[(L²+b²)-(b²/Cos²(β/2)]=√[(9+16)-(16*4/3]=√(11/3)=√33/3.

Восновании пирамиды sabc лежит равнобедренный треугольник abc: ав=вс=b, уголabc=бетта . рѐбра sa и s
irinalav2705745

Дано:

<AOB и <COD

<COD  внутри <AOB 

AO ┴ OD;  CO ┴ OB;

<AOB - <COD = 90°

Найти: <AOB и <COD.

Решение

Т.к . AO ┴ OD;  CO ┴ OB,

то <AOD = 90; <COB = 90°.

 <COD = <AOD  - <AOC

<COD = <COB  - <DOB

 

<COD = 90° - <AOC

<COD = 90° - <DOB

Получим

<AOC = 90° - <COD

<DOB = 90° - <COD

Следовательно <AOC = <DOB

 

2) По условию: <AOB - <COD = 90°

Но если от всего угла  <AOB отнять <COD, то останутся два равных угла  <AOC и <DOB, значит, это их сумма равна 90°.

<AOC + <DOB = 90° =>

<AOC = <DOB = 90°/2 = 45°

 

3) <COD = 90° - <DOB

<COD = 90° - 45°=45°

 

4) <AOB = <AOC + <DOB + <DOB

<AOB = 45° + 45° + 45° = 135°

ответ: <AOB - 135°;  <COD =45°.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

На сторонах ав і ас трикутника авс позначено точки м і к відповідно, мв=6см, ак=4см, ас=18см, ам=10см. знайдіть площу чотирикутника мвск, якщо площа трикутника мак дорівнює 15 см^2.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

alex07071
Любовь
Alekseevna
Оксана759
kuznecovav3066
poch23420
Дмитрий74
litlenet
abdulhakovalily22
admiral-kazan
nordwokintos4
Назаров588
abroskin2002
melissa-80
asskokov