Дано :
параллелограмм NPKA
<ANK = 45°
<KNP = 65°
Найти:
<А, <К, <Р, <N, <NKA, <NKP = ?
<N = <ANK + <KNP = 45° + 65° = 110°
<N = <K = 110° (св-во параллелограмма - противоположные углы равны)
<А = 180° - <К = 180° - 110° = 70° (свойство параллелограмма - углы, прилежащие к любой стороне, в сумме равны 180°)
<Р = <А = 70° (св-во параллелограмма - противоположные углы равны)
<NKA = <KNP = 65° (н.л. при NP//AK и секущей NK)
<NKP = <K - <NKA = 110° - 65° = 45°
ответ: <А = <Р = 70° ; <К = <N = 110° ; <NKA = 65° ; <NKP = 45°
ответ: АС≈45,4 см, МС=5√37
Объяснение:
Не рассматривая отрезок АС, который проведен в середине ΔАВС, найдем сторону АС ΔАВС и проекцию МС. Рассмотрим ΔАВМ. В нем АВ - гипотенуза, а ВМ и АМ катеты. Найдем ВМ по теореме Пифагора:
ВМ²=АВ²-АМ²=30²-15²=900-225=675; ВМ=√675=√(25×9×3)=5×3√3=15√3см
Рассмотрим ΔВСМ. В нем ВС - гипотенуза, а ВМ и МС - катеты. Найдем МС по теореме Пифагора:
МС²=ВС²-ВМ²=40²-(√675)²=1600-675=925; МС=√925=√(25×37)=5√37
АС=АМ+МС=15+5√37.
Можно так и оставить, поскольку целые числа и числа с корнями не складываются, но если нужно вычислить, то найдем приблизительное значение корня, округлив до сотых: √37≈6,08, подставим его вместо знака корня:
АС=15+5×6,08=15+30,4=45,4см
Поделитесь своими знаниями, ответьте на вопрос:
50 ! высота трапеции, диагонали которой взаимно перпендикулярны, равна 4 см. найти площадь трапеции, если известно, что длина одной из диагоналей равна 5 см.