benonika
?>

Периметр прямоугольника равняется 74 см, а площадь 300 см^2. найти стороны прямоугольника.

Геометрия

Ответы

fixer2006
Периметр  равен: 2(а+в), где а,в -  стороны попарно равны.                    а+в = 37,а=37-в. Площадь равна а*в.
То есть (37-в)*в=300  или в²-37в+300 = 0.  квадратное уравнение
в1 = (37+13)/2 = 25см, тогда а1=12см.
( проверим: площадь равна 25*12=300) Все ОК
в2= (37-13)/2=12см, тогда а1 = 25см, что тоже удовлетворяет решению.
 стороны прямоугольника равны 12см(пара) и 25см(пара)
 стороны прямоугольника
emilbadalov

драпежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасаты

Klyucharyova

\frac{\pi}{12} \: u \: \frac{5\pi}{12} \\

или

15° и 75°

Объяснение:

Обозначим в прямоугольном треугольнике

катеты как a, b

гипотенузу как с (с = 4)

и углы как \alpha \: u \: \beta

Причем углы связаны формулой

\alpha \: = \: 90^o - \beta < = \alpha \: = \: \frac{\pi}{2} - \beta

Тогда площадь треугольника, равная 2, равна половине произведения катетов:

S = \frac{1}{2} \cdot{a}\cdot{b} = 2

Однако для острого угла в прямоугольном треугольнике отношение прилежащего катета к гипотенузе - это косинус угла, а отношение противолежащего катета к гипотенузе - это синус угла

Соответственно, каждый из катетов можно выразить через синус и косинус одного из острых углов:

\cos\alpha = \frac{a}{c} = a = c \cdot \cos \alpha \\ \sin\alpha = \frac{b}{c} = b = c \cdot \sin \alpha \\

Т.к. с = 4, получаем:

a = 4 \cos \alpha \\ b = 4 \sin \alpha \\S = \frac{1}{2} \cdot{a}\cdot{b} = 2 \\ \frac{1}{2} \cdot 4\sin\alpha\cdot{4cos\alpha}=2

Получаем ригонометрическое уравнение:

\frac{1}{2} \cdot4\sin\alpha\cdot{4cos\alpha}=2 \\ 4\sin\alpha\cdot{4cos\alpha}=4 \\ 4\sin\alpha\cdot{cos\alpha}=1\\ 2\sin\alpha\cdot{cos\alpha}= \frac{1}{2 }\\ \sin 2\alpha = \frac{1}{2} \\ 2\alpha = ( - 1)^{k} \arcsin( \frac{1}{2} ) + \pi{k}, k \in Z

\arcsin( \tfrac{1}{2} ) = \frac{\pi}{6} ; \: \pi -\arcsin( \tfrac{1}{2} ) = \frac{5\pi}{6} \\ 2\alpha = ( - 1)^{k} \cdot\frac{\pi}{6} + \pi{k} =\bigg[ \large^{ \frac{ \pi}{6} + 2 \pi{n}, \: \: n \in Z } _{\frac{5\pi}{6} + 2\pi{m} , \: m \in Z} \\ \alpha = \bigg[\large^{ \frac{ \pi}{12} + \pi{n}, \: \: n \in Z } _{\frac{5\pi}{12} + \pi{m}, \: \: m \in Z } \:

Т.к. мы ищем углы в прямоугольном треугольнике, то

0 \leqslant \alpha \leqslant \frac{\pi}{2}

Соответственно попадают в этот интервал только следующие полученные углы:

0 \leqslant \frac{\pi}{12} + \pi{n} \leqslant \frac{\pi}{2} , \: \: n \in Z \\ 0 \leqslant \frac{1}{12} + {n} \leqslant \frac{1}{2} , \: \: n \in Z \\ - \frac{1}{12} \leqslant \frac{1}{12} + {n} - \frac{1}{12} \leqslant \frac{1}{2} - \frac{1}{12} , \: \: n \in Z \\ - \frac{1}{12} \leqslant {n} \leqslant \frac{5}{12} , \: \: n \in Z = n = 0 \\ \alpha = \frac{ \pi }{12} \\

0 \leqslant \frac{5\pi}{12} + \pi{m} \leqslant \frac{\pi}{2} , \: \: m\in Z \\ 0 \leqslant \frac{5}{12} + {m} \leqslant \frac{1}{2} , \: \: m \in Z \\ - \frac{5}{12} \leqslant \frac{5}{12} + {m} - \frac{5}{12} \leqslant \frac{1}{2} - \frac{5}{12} , \: \: m\in Z \\ - \frac{5}{12} \leqslant {m} \leqslant \frac{1}{12} , \: \: m \in Z = m= 0 \\ \alpha = \frac{ 5 \pi }{12} \\

Итак, мы получили 2 пары углов:

\small \alpha = \frac{\pi}{12} = \beta {= } \frac{\pi}{2}{ - }\alpha = \frac{\pi}{2} {- }\frac{\pi}{12} = \frac{5\pi}{12} \\ \small \alpha = \frac{5\pi}{12} = \beta {= } \frac{\pi}{2}{ - }\alpha = \frac{\pi}{2} {- }\frac{5\pi}{12} = \frac{\pi}{12} \\

Очевидно, что это одна и та же пара углов, в зависимости от того, какой катет мы брали за а, а какой за b.

Итак, получаем ответ:

\frac{\pi}{12} \: u \: \frac{5\pi}{12} \\

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Периметр прямоугольника равняется 74 см, а площадь 300 см^2. найти стороны прямоугольника.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Спиридонова
lanac3po
Илья Владимировна
Полковников_Милана
semenov-1970
maxborod
juliavovo
mospaskrasnogorbukh
Хрулёва
Марина Федорович924
denisdenisov63
Борисовна
tcmir
Darialaza
Belov Yekaterina639