Объяснение: ΔXLY подобен ΔKLM (по 1 признаку подобия)
XY:КМ=LY : LM 15:25=12:LM LM=25*12:15=20
YM=LM-LY=20-12=8
Внутри треугольника АВС взята точка D такая, что угол ABD = угол ACD = 45°. Докажите, что отрезки AD и BC перпендикулярны и равны, если угол ВАС равен 45°
* * *
Продлим ВD до пересечения с АС в т.Н, а отрезок СD - до пересечения с АВ в т.К и проведем АМ через т.D.
∠АСD=45° по условию, Если ∠ВАС=45°, то ∠АКС=90° и ∆ АСК – равнобедренный прямоугольный. АК=СК.
В ∆ АВН два угла при АВ равны 45°⇒∠ВНА=90° и ∆ АВН - равнобедренный прямоугольный, Тогда точка D - пересечение высот СК и ВН треугольника АВС. Отрезок АМ, содержащий АD, проходит через точку пересечения высот, следовательно, является высотой и перпендикулярен ВС. Отсюда АD⊥ВС. Доказано.
Прямоугольные ⊿ АКD и ⊿ CMD подобны по равному углу при вершине D ( вертикальные) ⇒ ∠КАD=∠MCD.
Рассмотрим ⊿ АКD и ⊿ ВКС. Из ⊿ АКС их катеты АК=СК. Острые ∠КАD и ∠КСВ равны (из доказанного выше). Следовательно, ⊿ АКD=⊿ ВКС по катету и острому углу. Отсюда следует равенство гипотенуз этих треугольников. АD=ВС, ч.т.д.
Поделитесь своими знаниями, ответьте на вопрос:
30 прямая, параллельная стороне km треугольника klm, пересекает стороны kl и lm в точках x и y соответственно. найдите ym, если xy= 15, km=25, ly=12
ответ: MY=8 .
Объяснение:
ΔKLM , XY║KM , KM=25 , XY=15 , LY=12 .
ΔXLY подобен ΔKLM, так как XY║KM ( подобие по двум равным углам , ∠LKM=∠LXY , ∠LMK=∠LYX как соответственные углы )
Из подобия следует пропорциональность соответствующих сторон: