1)Окру́жность — замкнутая плоская кривая, которая состоит из всех точек на плоскости, равноудалённых от заданной точки: эта точка называется центром окружности.
2)Радиус это отрезок, соединяющий центр окружност с любой точкой, лежащей на окружности, а диаметр - отрезок, соединяющий две точки на окружности и проходящий через центр окружности. Из этого следует, что радиус равен половине диаметра и наоборот диаметр равен двум радиусам.
3)Диаметр.
4)Дуга обозначается полукругом, градусная мера половины дуги окружности равна 180 градусам, градусная мера всей окружности равна 360 градусам.
5)Хорда находится на секущей прямой — прямой линии, пересекающей кривую в двух или более точках. Плоская фигура, заключённая между кривой и её хордой называется сегментом, а часть кривой, находящаяся между двумя крайними точками хорды называется дугой.
6)Центральный угол — это угол, вершина которого находится в центре окружности.
7)Можно провести только 2 точки, они должны касаться окружности с разных сторон.
8)Вершина угла - это точка, из которой выходят два луча, образующих угол и называемые сторонами угла.
9)Можно провести только 2 точки, они должны касаться окружности с разных сторон.
10)Pадиус, проведенный в точку касания, перпендикулярен касательной.
Доказательство
Пусть ω (O; R) – данная окружность, прямая a касается ее в точке P. Пусть радиус OP не перпендикулярен к a. Проведем из точки O перпендикуляр OD к касательной. По определению касательной, все ее точки, отличные от точки P, и, в частности, точка D лежат вне окружности. Следовательно, длина перпендикуляра OD больше R – длины наклонной OP. Это противоречит свойству наклонной, и полученное противоречие доказывает утверждение.
Говорят, что две окружности касаются, если они имеют единственную общую точку. Эта точка называется точкой касания окружностей.
Проведем через точку касания окружностей касательную к одной из них. Тогда можно доказать, что она будет касательной и к другой окружности, то есть будет общей касательной. Будем говорить, что окружности касаются внешним образом, если их центры лежат в разных полуплоскостях от общей касательной, и внутренним образом, если центры лежат в одной полуплоскости от общей касательной.
11)Центральный угол — угол с вершиной в центре окружности. Центральный угол равен градусной мере дуги, на которую опирается. Свойства вписанных углов. Рассмотрим примеры, после чего для вас – тест по теме “Вписанные, центральные углы”.
12)240 градусов т. к. угол вписанный в окружность равен половине центрального опирающегося на ту же самую дугу.
13)Вписанные углы, опирающиеся на одну дугу, равны.
14)Отрезки касательных к окружности проведённых из одной точки равны, покажу на иллюстрации.
15)Вписанный угол равен половине центрального угла, опирающегося на ту же дугу окружности.
Докажите, что треугольник с вершинами A (-4; -1), B (2; -9), C (7; 1) равноБЕДРЕННЫЙ, и найдите длину биссектрисы к основаниЮ .
Объяснение:
A (-4; -1), B (2; -9), C (7; 1)
АВ=√( (2+4)²+(-9+1)²)=√(36+64)=10
ВС=√( (7-2)²+(1+9)²)=√(25+100)=5√5
СА=√( (-4-7)²+(-1-1)²)=√(121+4)=√125=5√5⇒ ΔАВС-равнобедренный , т.к ВС=СА ⇒ АВ-основание.
Биссектриса в равнобедренном треугольнике является медианой. Пусть О-середина АВ , найдем ее координаты.
х(О)= ( х(А)+х(В) )/2 у(О)= ( у(А)+у(В) )/2
х(О)= ( -4+2 )/2 у(О)= ( -1-9 )/2
х(О)= -1 у(О)= -5
О( -1 ;-5) .
СО=√( -1-7)²+(-5-1)²=√(64+36)=√100=10
Поделитесь своими знаниями, ответьте на вопрос:
Решение : биссектриса углов прямоугольника делит его большую сторону пополам меньшая сторона прямоугольника = 5см найти пиримирт прямоугольника.
1) Назовём прямоугольник АВСД, биссектриса проведена к стороне АВ. Точка касания - М. Тогда по условию AM = MB.
2) Биссектриса делит угол АСД на равные углы АСМ и МСД.
3) Так как по свойству прямоугольника АВ параллельно СД, то угол МСД равен углу АМС (как накрест лежащие при секущей СМ).
4) Получим равнобедренный треугольник АСМ, сторона АС которого равна 5. А так как треугольник равнобедренный, то АС = АМ = 5.
5) АМ = МВ = 5, следовательно сторона АВ = 5+5= 10.
6) Периметр прямоугольника равен (10+5)2= 30
ответ: 30