<B=120 => <A=180-120=60 как внутренние односторонние углы при ADIIBC и AB - секущей <C=<A=60, <D=<B=120
ellyb106786
10.04.2023
АВСД - трапеция, Р=25 см , ∠Д=60° , АС - биссектриса, АС⊥СД . ΔАСД: ∠Д=60° , ∠АСД=90° ⇒ ∠САД=30° . Катет СД, лежащий против угла в 30° = половине гипотенузы АД ⇒ АД=2·СД Если обозначим СД=а, то АД=2а. Так как АС - биссектриса, то ∠ВАС=∠САД=30°. ∠ВАД=∠ВАС+∠САД=30°+30°=60° ⇒ ∠ВАД=∠АДС ⇒ трапеция равнобедренная ⇒ АВ=СД=а . ∠САД=∠ВСА как внутренние накрест лежащие ⇒ ∠ВСА=30°. Так как ∠ВАС=∠ВСА=30°, то ΔАВС - равнобедренный ⇒ АВ=ВС=а. Периметр Р=АВ+ВС+СД+АД=а+а+а+2а=5а 5а=25 ⇒ а=5 АВ=ВС=СД=5 см , АД=10 см .
Nekrasova
10.04.2023
Угол А = 60, значит и угол С = 60. Тогда угол Б и угол Д = 120. Из условия: угол ABD = 90, а угол CBD = 30. P = 30 см. BC = AD и AB = CD (т.к. всё это параллелограмм). P = 2AD+2BC 30 = 2BC+2AD 15 = BC+AD BC = 15 - AD В треугольнике ABD одноимённый угол 90 градусов, а угол А - 60, значит оставшийся угол 30. Тогда лежащий против угла в 30 градусов будет 1/2 гипотенузы. Гипотенуза тут как раз-таки AD. А против 30 градусов лежит AB, которая равна BC, поэтому продолжим называть её BC. Итак, BC = 1/2AD Вернемся к нашему периметру: BC = 15 - AD BC = 15 - 2BC 3BC = 15 BC = 5.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Впараллелограмме abcd угол b равен 120 градусам и биссектриса этого угла делит сторону ad на отрезки ae =6см и de=2см. найти углы параллелограмма
ADIIBC и AB - секущей
<C=<A=60, <D=<B=120