Пусть длины сторон соответственно 2х, 3х и 4х. Тогда периметр равен 2х+3х+4х = 9х Находим х. 153 / 9 = 17 Находим каждую сторону 2 х = 17*2=34 см 3х = 17*3= 51 см 4х = 17*4 = 68 см
vlrkinn
27.12.2022
Строим ромб АВСД, где есть диагонали АС и ВД. Допустим, они пересекаются в точке О. Рассмотрим треугольник АОД. Он прямоугольный, так как угол АОД=90 градусов (Диагонали ромба пересекаются под прямым углом, это по свойству ромба). Также диагонали ромба делятся точкой пересечения пополам, это тоже свойство ромба. Получаем, что АО=1/2АС=12. Тогда ДО=1/2ВД=9. Применяем теорему Пифагора, где квадрат гипотенузы равен сумм квадратов катетов, т.е. получаем, что АД^2=AO^2+ДО^2. Катеты известны, ищем гипотенузу, которая и будет являться стороной ромба. АД^2=12^2+9^2 АД=корень из 12^2+9^2= корень из 144+81=корень из 225 = 15см. Сторона ромба равняется 15 см.
yuraotradnov
27.12.2022
Проведем радиусы от центра окружности О до точек касания В и С. И соедини центр окружности с точкой А. рассмотрим получившиеся треугольники АВО и АСО, в них: угол АВО = угол АСО = 90 гр. (св-во касательных) , следовательно, треугольники АВО и АСО прямоугольные. А чтобы доказать равенство двух прямоуг. треуг-ов достаточно найти 2 равных элемента: - катет ОВ = катет ОС (радиусы окружности) - ОА - общ. гипотенуза из этого следует, что треугольники равны, следовательно все элементы этих треуг-ов равны. а следовательно равны и катеты АС и АВ ч. т. д.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Периметр треугольника равен 153 см, а стороны относятся как 2: 3: 4. найдите стороны данного треугольника.
Находим х. 153 / 9 = 17
Находим каждую сторону
2 х = 17*2=34 см
3х = 17*3= 51 см
4х = 17*4 = 68 см