α⊥β, α∩β = а.
Проведем МА⊥α и МВ⊥β.
Тогда МА = 12 см - расстояние от точки М до плоскости α,
МВ = 5 см - расстояние от точки М до плоскости β.
Затем проведем АС⊥а и ВС⊥а.
Если прямая, лежащая в одной плоскости, перпендикулярна линии пересечения перпендикулярных плоскостей, то он перпендикулярна другой плоскости. Значит
АС⊥β и ВС⊥α.
АС║МВ и ВС║МА как перпендикуляры к одной плоскости, значит
МАСВ прямоугольник.
Прямая а перпендикулярна плоскости МАВ (а⊥АС и а⊥ВС), значит
а⊥МС.
МС - искомое расстояние от точки М до прямой а.
Из прямоугольного треугольника МАС по теореме Пифагора:
МС = √(МА² + АС²) = √(144 + 25) = √169 = 13 см
Поделитесь своими знаниями, ответьте на вопрос:
Крыша башни имеет вид правильной четырёхугольной пирамиды со стороной основания 1, 8м высота 12м найти площадь крыши?
В них: BF=BK (по условию)
FP=PK (по условию)
BP - общая
треугольники равны по трём сторонам. Из равенства треугольников следует равенство элементов => угол BFP = углу BKP, что и требовалось доказать
б) так как углы BFP и BKP равны, то смежные с ними AFP и PKC тоже будут равны.
Рассмотрим треугольники AFP и PKC
В них: FP=KP (по условию)
угол APF = углу KFC (по условию)
угол АFP = углу PKC (из ранее доказанного)
Треугольники равны по двум углом и прилежащей к ней стороне. Из равенства треугольников следует равенство элементов => АР=PC => Р - середина АС, что и требовалось доказать