rytikovabs
?>

Высота правильной четырехугольной пирамиды равна 4 см а сторона основания равна 8 см. вычислите угол, который образует боковая грань с плоскостью основания.

Геометрия

Ответы

Мамедов
Если проведём осевое сечение через апофему боковой грани, то получим прямоугольный треугольник OSE.
Катет этого треугольника ОЕ равен половине стороны основания.
Значит, ОЕ = 8/2 = 4 см, то есть, треугольник равнобедренный и угол при основании равен 45 градусов.
Он и есть искомый угол, который образует боковая грань с плоскостью основания.
Ушакова1902

1. От точки А строим угол, равный данному (описано в первом

варианте) и на полученной второй его стороне откладываем отрезок

АВ, равный данной гипотенузе. Из точки В опускаем перпендикуляр на

прямую "а". Для этого:

Из точки В проводим окружность любого радиуса R, чтобы пересекла

прямую "а" в точках G и Q. Из точек G и Q тем же радиусом проводим

две дуги, пересекающиеся в точке M. Прямая ВМ - искомый перпендикуляр.

На пересечении прямых ВМ и "а" ставим точку С.

Соединяем точки А,В и С и получаем прямоугольный треугольник АВС

с прямым углом <C и с заданными гипотенузой и острым углом.

2.  На прямой  "а" откладываем отрезок, равный одной из сторон, например, АС. Проводим окружности с центрами в точках А и С радиусами, равными двум другим сторонам, например, АВ и СВ  соответственно. В точке пересечения этих окружностей получаем точку В. Треугольник построен.

3. На прямой "а" откладываем отрезок, равный стороне АВ, к которой проведена высота СН. Проводим окружность радиуса ВС с центром в точке В. Из точки В к прямой "а" восстанавливаем перпендикуляр и на нем откладываем отрезок ВР, равный высоте СН. Из точки Р проводим перпендикуляр к отрезку ВР и в точке пересечения этого перпендикуляра с проведенной ранее окружностью ставим точку С.

Соединив точки А,С и В получаем искомый треугольник.

P.S. Построение перпендикуляра к прямой в заданную точку не описываю - это стандартное построение.

mishapavlov9

Боковое ребро AA1 образует со сторонами основания AB и AD равные углы 60.

Возьмем на ребре AA1 точку T и опустим перпендикуляры на стороны: TK⊥AB, TN⊥AD

△TAK=△TAN по гипотенузе и острому углу => AK=AN

Опустим перпендикуляр TH на плоскость основания.

По теореме о трех перпендикулярах HK⊥AB, HN⊥AD

AKHN - квадрат

Диагональ AH квадрата AKHN лежит на диагонали AC квадрата основания. Перпендикуляр из T падает на AC, следовательно перпендикуляр из A1 - высота призмы - также падает на AC.

Пусть AN=1, тогда AT=AN/cos60=2, AH=AN/cos45=√2

=> cosTAH =AH/AT =√2/2 => ∠TAH=45 =∠A1AC

Диагональное сечение AA1C1C содержит высоту, следовательно перпендикулярно основанию.

S(AA1C1C) =AC*h (h - высота из A1)

32 =4√2*h => h =4√2

(Поскольку высота из A1 образует с вершиной A треугольник c углами 45, 90 - равнобедренный - видим, что она падает в точку С.)

AA1 =h/sin45 =4√2*√2 =8 =BB1

AC⊥BD (диагонали квадрата) => AA1⊥BD (т о трех перпендикулярах)

=> BB1⊥BD, BB1D1D - прямоугольник

S(BB1D1D) =BB1*BD =8*4√2 =32√2 (см^2)


в основании параллелепипеда лежит квадрат со стороной 4 см. один из диагональных сечений параллелепи

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Высота правильной четырехугольной пирамиды равна 4 см а сторона основания равна 8 см. вычислите угол, который образует боковая грань с плоскостью основания.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

alexeytikhonov
lera4075
yulyashka2142
Aleksandrivanovna
aynaakzhigitova
vdk81816778
manager6
sahar81305
Скворцов
Yurevna419
Суравцова_Алексей669
katya860531
Nazaruk_Kodochigov
Титова674
bistrayakuhnya46