Диагональ делит параллелограмм на 2 равных треугольника. Считаем площадь одного, умножаем на 2 и - вуаля! (площадь треугольника считаем по формуле S = a*b*sin(C)/2). Окончательно
S = 14*8,1*(1/2) = 56,7.
Ну хорошо, поступила без синусов. Тогда так. Из вершины диагонали, которая НЕ общая с заданной стороной, опускаем перпендикуляр на эту сторону. Это - высота параллелограмма (и того треугольника, про который я говорил - тоже, но это не важно). У нас получился прямоугольный треугольник, у которого острый угол 30 градусов, а высота - противолежащий катет (углу в 30 градусов). Поэтому высота равна половине гипотенузы этого треугольника, то есть - в данном случае - диагонали параллелограмма. То есть высота параллелограмма равна 14/2 = 7.
S = 7*8,1 = ... ну, вы уже в курсе :
Объяснение:
1. Треугольники ACO и ABO равны. ОА - биссектриса угла => ∠BAC = 2*∠CAO. ∠CAO из прямоугольного треугольника определяется так: отношение противолежащего катета OC (к углу CAO) к гипотенузе OA есть синус этого угла. sin(∠CAO) = OC/OA = r/(2r) = 1/2. Угол, синус которого равен одной второй известен. Это угол в 30 градусов. Тогда ∠BAC = 2*30° = 60°.
2. Отрезки AB и AC равны. Т.к. отрезки касательных проведенных из одной точки к некоторой окружности равны. А именно AB = AH и AC = AH. Отсюда следует, что AB = AC.
3. Аналогично предыдущему вопросу доказываем, что CM = CE, CA = CB. AM = CM - CA, BE = CE - CB = CM - CA = AM.
UPD: Не синус одной второй равен 30 градусам, а синус 30 градусов равен одной второй. Или с применением арксинуса: арксинус одной второй равен 30 градусам. Описка незначительная.
Поделитесь своими знаниями, ответьте на вопрос:
Найти площадь треугольника 15: 20: 25