В прямоугольнике ABCD диагонали пересекаются в точке О. Угол COD равен 32°. Найдите углы ODA, OAB, BOC, BOA.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Дано :
Четырёхугольник ABCD - прямоугольник.
АС∩BD = O.
∠COD = 32°.
Найти :
∠ODA = ?
∠ОАВ = ?
∠ВОС = ?
∠ВОА = ?
∠ВОА = ∠COD = 32° (так как вертикальные).
∠ВОС + ∠COD = 180° (так как смежные) ⇒ ∠ВОС = 180° - ∠COD = 180° - 32° = 148°.
Диагонали прямоугольника равны и точкой пересечения делятся пополам.Следовательно, АО = ВО = СО = DO.
Рассмотрим ΔCOD - равнобедренный (по определению).
По теореме о сумме углов треугольника - ∠COD + ∠OCD + ∠ODC = 180° ⇒ ∠OCD + ∠ODC = 180° - ∠COD = 180° - 32° = 148°.
Учитываем, что углы при основании равнобедренного треугольника равны - ∠ODC = ∠OCD = 148° : 2 = 74°.
Тогда ∠ODA + ∠ODC = 90° ⇒ ∠ODA = 90° - ∠ODC = 90° - 74° = 16°.
Рассмотрим ΔВОА - равнобедренный (по определению).
По теореме о сумме углов треугольника - ∠ВОА + ∠ОАВ + ∠ОВА = 180° ⇒ ∠ОАВ + ∠ОВА = 180° - ∠ВОА = 180° - 32° = 148°.
Учитываем, что углы при основании равнобедренного треугольника равны - ∠ОАВ = ∠ОВА = 148° : 2 = 74°.
∠ODA = 16°, ∠ОАВ = 74°, ∠ВОС = 148°, ∠ВОА = 32°.
Вписанные углы опирающиеся на диаметр равны по 90°, поэтому ∠ADC=90°=∠CBA.
Треугольник ADC - равнобедренный (DA=DC) и прямоугольный (∠ADC=90°), поэтому углы при его основании равны по 45°. ∠DAC=45°=∠DCA
Треугольник ABC - прямоугольный (∠CBA=90°), так же 2AB=AC. Угол лежащий напротив катета, который вдвое меньше гипотенузы равен 30°, поэтому ∠BCA=30°. Сумма острых углов в прямоугольном треугольнике составляет 90°, поэтому ∠BАС=60°.
∠BAD = ∠BAC+∠DAC = 60°+45° = 105°
∠BCD = ∠BCA+∠DCA = 30°+45° = 75°
ответ: ∠BAD=105°; ∠BСD=75°.
Поделитесь своими знаниями, ответьте на вопрос:
Найдите периметр прямоуголника, если его площадь равно 192, а отношение длин соседних сторон равно 3: 4
1 сторона= 3х
2 сторона= 4х
S= 4х*3х=12
х=4
1) 1 сторона
3*4=12
2) 2 сторона
4*4=16
3) Р= 2(12+16)=56