Плоскости α и β параллельны. Через точку M, находящуюся между этими плоскостями, проведены две прямые. Одна из них пересекает плоскости α и β в точках A₁ и B₁, а другая — в точках A₂ и B₂ соответственно . Найдите отрезок A₁A₂, если он на 1 см меньше отрезка B₁B₂, MA₂ = 4 см, A₂B₂ = 10 см.
Объяснение:
1) Две пересекающиеся прямые А₁В₁ и А₂В₂ определяют плоскость
(А₁А₂ В₂) единственным образом ( аксиома). Эта плоскость пересекает параллельные плоскости α и β по параллельным прямым А₁А₂ и В₁В₂( свойство).
2) ΔМА₁А₂~ΔMB₁B₂ по 2-м углам : ∠А₁МА₂=∠B₁МB₂ как вертикальные , ∠А₁А₂М =∠В₁В₂М как накрест лежащие при А₁А₂ || В₁В₂, А₂В₂-секущая. Поэтому сходственные стороны пропорциональны
А₁А₂ : В₁В₂ = АМА₂ : МВ₂
А₁А₂ : (А₁А₂+1) = 4: ( 10-4)
4(А₁А₂+1)=А₁А₂*6 ⇒ А₁А₂= 2 cм
ответ: неверные: 2, 3.
Объяснение: 1 будет правильно по свойству вертикальных углов.
2 будет неверно из-за того, что смежные углы это два угла у которых 1 сторона общая а две другие являются продолжениями одна другой, а на предоставленном примере несказанно то что у них одна сторона общая судя по этому мы можем сказать то что это два любых различных угла.
3 будет неверно из-за того, что вертикальные углы это два угла у которых стороны одного угла являются продолжением сторон другого, а у нас не сказано то что стороны этих углов являются продолжением друг друга, из чего мы можем сделать вывод то, что это неверно.
4 будет верно.
Поделитесь своими знаниями, ответьте на вопрос:
Вравнобедренном треугольнике abc (ab=bc) проведены биссектрисы am и ck, которые пересекаются в точке o. докажите, что треугольник aok= треугольнику com
2) В равнобедренном треугольнике, медианы пересекаются в точке О. Эта точка, делит медиану в соотношении 2:1 начиная от вершины. Учитывая, что медианы в равнобедренном треугольнике равны (?нужно уточнить?), можно сказать, что КО=ОМ, а АО=ОС.
3) Исходя из 1)АК=СМ и 2) КО=ОМ, АО=ОС можно сделать вывод, что треугольники равны по трём сторонам => Треугольники АКО и СОМ равны