1.
М - середина АВ, значит МВ = АВ/2
Р - середина МВ, значит РВ = МВ/2 = АВ/4
К - середина ВС, значит КС = ВС/2
Е - середина КС, значит ЕС = КС/2 = ВС/4
N - середина АС, значит NA = АС/2
G - середина NA, значит GA = NA/2 = AC/4
По условию
PB + EC + GA = 12
АВ/4 + ВС/4 + АС/4 = 12
1/4 · (АВ + ВС + АС) = 12
АВ + ВС + АС = 12 · 4 = 48 (см)
2.
Из решения первой задачи следует, что
АР = 3/4 АВ
ВЕ = 3/4 ВС
CG = 3/4 AC
По условию
AP + BE + CG = 108
3/4 АВ + 3/4 ВС + 3/4 АС = 108
3/4 · (АВ + ВС + АС) = 108
АВ + ВС + АС = 108 · 4/3 = 144 (см)
ответ: ВД приблизительно 73,32см
Объяснение: так как нам известно, что сторону АД =80 ° делит высота ВН, отсекая от неё отрезок 32см, то второй отрезок будет: 80-32=48см;
АН=32см; НД=48см. Рассмотрим ∆АВН- он прямоугольный и ,зная в нём две стороны, найдём по теореме Пифагора высоту ВН:
ВН²=64²-32²=4096-1034=3072=√3072
ВН=√3072см. Теперь рассмотрим ∆ВДН - он тоже прямоугольный и, зная высоту ВН мы можем найти диагональ ВД- расстояние между вершинами тупых углов по теореме Пифагора:
ВД²=48²+3072= 2304 +3072=5376
ВД=√5376=√256×√21=16√21(см). Если округлить до сотых будет приблизительно 73,32(см)
Поделитесь своими знаниями, ответьте на вопрос:
Решение к и рисунок. точка д лежит внутри треугольника прс. найдите угол рдс, если рс=пс, дп=др, угол рдп =100 градусов