Поделитесь своими знаниями, ответьте на вопрос:
УМОЛЯЮ ОЧЕНЬ НАДО СЕЙЧАС Дана трапеция ABCD, где BС и AD - основания. Провели прямую BK||СD. Периметр получившегося треугольника ABK равен 15. Найдите периметр трапеции, если известно, что меньшее основание трапеции BC=6
1)
Если требуется найти синус угла между диагоналями четырехугольника, то так как средние линии взаимно перпендикулярны и параллельны диагоналям, то угол между ними равен 90 гр , откуда sin90=1
2)
Если требуется найти синус угла между отрезками, то выразив
KL=√(BD^2+AC^2)/2 KO=√(BD^2+AC^2)/4
Из теоремы синусов, в треугольнике KON, если x угол между отрезками, то
(AC)/sinx =√(BD^2+AC^2)/(2cos(x/2))
откуда sin(x/2)=(AC^2/(2*√(BD^2+AC^2)))=y тогда cos(x/2)=√(1-y^2) значит
sin(x)=2*√(y^2-y^4) = AC^2*√(4AC^2+4BD^2-AC^4)/(2*(AC^2+BD^2))