Площадь боковой поверхности цилиндра:
Sбок = 2πRH
По условию H = R - 2,
2πR(R - 2) = 160π
R(R - 2) = 80
R² - 2R - 80 = 0 по тоереме Виета:
R = 10 или R = - 8 (не подходит по смыслу задачи)
Н = R - 2 = 8 см
а) Осевое сечение - прямоугольник, стороны которого равны диаметру основания и высоте цилиндра:
Sос. сеч. = 2R · H = 2 · 10 · 8 = 160 см²
б) Сечение цилинра, параллельное оси, имеет форму прямоугольника, одна сторона которого равна высоте. Найдем другую сторону (АВ).
ΔАОВ равнобедренный (АО = ВО как радиусы). Проведем ОС⊥АВ, ОС = 6 см по условию. ОС является так же медианой, ⇒ АС = ВС.
ΔАОС: ∠АСО = 90°, по теореме Пифагора:
АС = √(АО² - ОС²) = √(10² - 6²) = √(100 - 36) = √64 = 8 см
АВ = 2АС = 16 см
Sсеч = AB · H = 16 · 8 = 128 см²
Поделитесь своими знаниями, ответьте на вопрос:
Втрапеции abcd угол а=60 градусов, угол d=45 градусов, основание bc равно 5 см, bf и ce - высоты трапеции, ed= 4 cм. найти площадь трапеции.
Проведем высоту BH.
Т.к. AB=AD, то углы у них равны (180-90):2=45°.
Треугольник BHC - прямоугольный, угол HBC= 45°, ∠HCB=90-45=45°, BC=DB.
Треугольник DAB - прямоугольный равнобедренный: обозначим AB=x, тогда по теореме Пифагора х^2+x^2=128, х^2=64, x=8 - это AD и AB.
Треугольник DBC - прямоугольный: угол BDC = 90-45=45°, тогда и угол DCB=180-90-45=45°, получается треугольник DBC - равнобедренный. DB=BC= 8 корней из 2. Этот треугольник состоит из двух равных прямоугольных треугольника, AB=DH=HC=8
BH=AD=8, т.к. ABHC - квадрат.
DC=DH+HC=8+8=16.
Найдем площадь трапеции: ((AB+DC)/2)*BH, S=((8+16)/2)*8=96.
Периметр равен AB+BC+CD+DA, P=8+8√2+16+8=32+8√2≈43,2.
ОТВЕТ: S=96, P=43,2