Постройки сначала равнобедренный треугольник, а затем постройки серединный перпендикуляр к отрезка AC. Точка пересечения серединного перпендикуляра с отрезок АС и будет точка пересечения медиана с АС. Проведи прямую, проходящую через точки В и точку пересечения В1 серединного перпендикуляра со стороной АС. Получило медиану.
Чтобы построить серединный перпендикуляр к отрезку АС, надо построить две окружности с радиусом АС в центрах в точках А и С. Затем просто соединить точки пересечения двух окружностей.
kazanoop
05.10.2021
Нот ʹонли уил зэ юс ов зэ вёлд би дэф эт ʹфоти, зэй уил би блайнд эз уэл фром ʹтрайин ту ʹхэмэ аут зэус ʹтини-ʹтайни литл батнс ин одэ ту кэʹмьюникэйт ʹэсинайн ʹмэсидж лайк "ай мис ю", "ю а рэʹволтин", энд "лэтс нот си ич азэ эниʹмо". джоли фан, изнт ит? зэ ʹгрэйтист ʹпэрэдокс фром зис тэкнэʹлоджикэл ʹонслот из зэт уи а нот ʹсэин ʹэнисин мо зэн уи дид биʹфо. ʹэкчуэли, уи мэй би ʹсэин э гуд ʹдиэл лэс, синс уэн уи ʹфайнэли мит ин зэ флэш энд блад уи хэвнт гот зэ стрэнгс ту ток. ай майт кэнʹтинью он зис рэнт - бат ай маст чек май ʹимэйлс нау.
Алексей Кирилл1094
05.10.2021
)по чертежу думаю все понятно там тэтрайдер. 1 расматриваем аов по теореме пифагора находим ов=10. 2 в треугольнике овс он равнобедренный проводим высоту он она попадает на середину вс. находим он по теореме пифагора он=корень под ним 100-9 =корень из 91. находим площадь треугольника 1/2*св*он=3корня из 91. находим периметр 10+10+6=26 2 находим ов=а корей из 2. находим он = 2а2-а2/4=а корней из 7 делить на 2. площадь а2 корней из 7 делить на 4 а периметр =а(1+2 корня из 2)
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Начертите равнобедренный треугольник abc с основанием bc. с циркуля и линейки проведите медиану bb1 по боковой стороне ас
Проведи прямую, проходящую через точки В и точку пересечения В1 серединного перпендикуляра со стороной АС. Получило медиану.
Чтобы построить серединный перпендикуляр к отрезку АС, надо построить две окружности с радиусом АС в центрах в точках А и С. Затем просто соединить точки пересечения двух окружностей.