На сторонах угла∡ABC точки A и C находятся в равных расстояниях от вершины угла BA=BC. Через эти точки к сторонам угла проведены перпендикуляры AE⊥BA CD⊥BC.
1. Чтобы доказать равенство ΔAFD и ΔCFE, докажем, что ΔBAE и ΔBCD, по второму признаку равенства треугольников:
BA=BC
∡BAF=∡BCF=90°
∡ABC — общий.
В этих треугольниках равны все соответсвующие эелементы, в том числе BD=BE, ∡D=∡E.
Если BD=BE и BA=BC, то BD−BA=BE−BC, то есть AD=CE.
Очевидно равенство ΔAFD и ΔCFE также доказываем по второму признаку равенства треугольников:
AD=CE
∡DAF=∡ECF=90°
∡D=∡
Подробнее - на -
Объяснение:
три сложения векторов: правило треугольника( складываютя 2 вектора, больше- многоугольника) : суммой двух векторов наз вектор соединяющий начало первого вектора с концом последнего, при условии что конец одного вектора находится в начале следующего;
правило параллелограмма: Суммой двух векторов исходящих из одной точки, называется вектор , исходящий из той же точки и являющийся диагональю параллелограмма АВСD, построенного на этих же векторах рис 2
сложение векторов a-> b-> c-> на первом рисунке
Поделитесь своими знаниями, ответьте на вопрос:
Решите ! в параллелограмме abcd диагональ bd перпендикулярна стороне ав, один из углов параллелограмма равен 120°, ad = 12 см, о - точка пересечения диагоналей. найдите диагонали параллелограмма и площадь треугольника cdo.только без теоремы косинусов мы ее не проходили!
∠ABD = ∠B - ∠CBD = 120° - 90° = 30°. Тогда AD = 1/2AB => AB = 2AD = 24 см.
По теореме Пифагора:
BD = √AB² - AD² = √24² - 12² = √576 - 144 = √432 = 12√3 см.
OC = OA, BO = OD, т.к. диагонали точкой пересечения делятся пополам. BO = 6√3 см.
AD = BC = 12 см, т.к. противоположные стороныр параллелограмма равны.
По теореме Пифагора:
CO = √CB² + BO² = √144 + 108 = √252 = 6√7 см.
CA = 2CO = 12√7 см.
SCOD = 1/2CB•OD = 1/2•12см•6√3см = 36√2 см².
Оьвет: 12√3 см, 12√7 см, 36√3 см².