пока только решение к заданию 327.
остальное решу и допишу
рис 231.
прямые m,n параллельны,т.к. соответвенные углы равны(по 100 град.); угол,смежный со вторым является соответственным углу 94 град.; значит угол 2+94=180град. угол2=180-94=86 град.
Объяснение:
Задание 330 рисунок к нему ниже
1) меньшие по 48°, большие по 132°.
2) меньшие по 40°, большие по 140°
При пересечении двух параллельных прямых секущей образуется пары равных углов:
соответственные (2 и 6, 1 и 5, 3 и 7, 4 и 8).
накрестлежащие: (3 и 5, 4 и 6 - внутренние ), (2 и 8, 1 и 7 - внешние). кроме того, равны и пары вертикальных углов.
1) Как известно, сумма смежных углов равна 180°. Поэтому углы, смежные углу, равному 48°, равны 180°-48°=132°
На рисунке 1 все мéньшие углы, окрашенные голубым, равны 48°. все бóльшие - 132°
2) На рисунке 2 смежные углы 2 и 3 относятся как 2:7. Т.е. развернутый угол делится на 2+7=9 частей. Каждая часть равна 180°:9=20°. Поэтому все мéньшие углы равны 2•20°=40°, бóльшие 7•20°=140°.
Задание 329
а ‖ b, с - секущая.
∟1 i ∟2 внутренние односторонние. ∟1> ∟2 в 4 раза.
Найти: ∟1; ∟2.
Пусть ∟2 = х; тогда ∟1 = 4х. Если а ‖ b, с - секущая,
тогда по признаку параллельности прямых имеем:
∟1 + ∟2 = 180 °.
Составим i решим уравнение:
4х + х = 180; 5х = 180; х = 180: 5;
х = 36 ∟2 = 36 °; ∟1 = 4 • 36 ° = 144 °
ответ. 36 ° и 144 °
Поделитесь своими знаниями, ответьте на вопрос:
Укажите номера верных суждений 1. если две параллельные прямые пересечены секущей, то сумма накрест лежащих углов равна 180° 2. равные треугольники имеют равные площади 3. если в четырёхугольнике две стороны параллельны, то этот четырёхугольник – параллелограмм. 4. сторона треугольника равна произведению радиуса описанной окружности на синус противолежащего угла.
Приклад 1. З вершини квадрата АВСD проведено перпендикуляр АК до площини квадрата. Знайти площу квадрата, якщо КD = 5 см; КС = 13 см.Розв’язання (мал. 416). 1) АК АВС; КD - похила; АDБ - її проекція. Оскільки АD DС, то за теоремою про три перпендикуляри маємо КD DС.3) Тоді площа квадрата S = 82 = 64 (см2).
Приклад 2. Сторони трикутника довжиною 4 см, 13 см і 15 см. Через вершину найбільшого кута до площини трикутника проведено перпендикуляр і з його кінця, що не належить трикутнику, проведено перпендикуляр завдовжки 4 см до протилежної сторони цього кута. Знайти довжину перпендикуляра, проведеного до площини трикутника.Розв’язання. 1) У ∆АВС: АВ = 4 см; ВС = 13 см; АС = 15 см. Оскільки АС - найбільша сторона трикутника, то АВС - найбільший кут трикутника. ВК АВС (мал. 417).2) КМ АС, тоді за теоремою про три перпендикуляри: ВМ АС, тобто ВМ - висота ∆АВС. За умовою: КМ = 4см.3) Знайдемо площу трикутника АВС за формулою Герона.4) 3 іншого боку