1.
АВ и ВС боковые стороны
ВН высота
АВ = ВС = 13
ВН = 5
В п/у треугольнике НВС НС по теор. Пифагора = корню из 13*13 - 5*5 = 12
Медиана в р/б треуг. явл и высотой,и она делит противоположную сторону на равные отрезки => основание = 24см
Периметр = 24 +13+13 = 50
Площадь равна 1/2 ВН * АС
1/2 * 5 * 24 = 60
2.
S=1/2*6*8=24 см²
чтобы найти периметр,надо найти сторону. находим по теореме Пифагора:
√(1/2*6)²+(1/2*8)²=5
Р=5*4=20 см
3.
На фотографии
4.
теорема:Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.
Исходя из этой теоремы мы получаем: АМ*МВ=СМ*СD
подставляем и находим, 12*10=СМ*СD
СМ*СD=120(1)
так как Dc=23 то мы DC можем представить как CM+DM=23
выражаем отсюда DM, DM=23-CM(2)
теерь второе выражение подставляем в первое:
CM*(23-CM)=120
120=23CM-CM²
CM²-23CM+120=0
решая квадратное уравнение мы получаем: CM=15 DM=8
5.
если в окружность вписан прямоугольный треугольник, то его гипотенуза-это диагональ этой окружности, внашем случае она равна 6,5*2=13. по теореме пифагора найдем неизветсный катет, он равен:
корень из гипотенуза квадрате минус другой катет в квадрате, это равно 13*13-5*5=12
площадь треугольника это половина произведения катетов, то есть 0,5*5*12=30
ответ:30
2. S=1/2*6*8=24 см²
чтобы найти периметр,надо найти сторону. находим по теореме Пифагора:
√(1/2*6)²+(1/2*8)²=5
Р=5*4=20 см
4. При пересечении двух хорд произведение длин отрезков, образованных точкой пересечения, одной хорды, равно произведению длин отрезков другой хорды.
АМ * ВМ = СМ * ДМ.
Пусть длина отрезка СМ = Х см, тогда ДМ = (23 – Х) см.
12 * 10 = Х * (23 – Х).
120 = 23 * Х – Х2.
Х2 – 23 * Х + 120 = 0.
Решим квадратное уравнение.
Х1 = 8 см.
Х2 = 15 см.
Если СМ = 8 см, ДМ = 15 см.
Если СМ = 15 см, ДМ = 8 см.
ответ: Длины отрезков равны 8 и 15 см
5. если в окружность вписан прямоугольный треугольник, то его гипотенуза-это диагональ этой окружности, внашем случае она равна 6,5*2=13. по теореме пифагора найдем неизветсный катет, он равен:
корень из гипотенуза квадрате минус другой катет в квадрате, это равно 13*13-5*5=12
площадь треугольника это половина произведения катетов, то есть 0,5*5*12=30
ответ: 30
Объяснение:
1 фото - 1 номер
2 фото - 3 номер
Поделитесь своими знаниями, ответьте на вопрос:
Много ! с рисунком и подробным решением 1)через середину о гипотенузы прямоугольного равнобедренного треугольника авс проведен к его плоскости перпендикуляр ко. 1) докажите, что наклонные ка, кв и кс равны. 2) вычислите длины проекций этих наклонных на плоскость треугольника, если ас = вс = а. 2)из точки м проведены к плоскости наклонные ма, мв и перпендикуляр мс, равный а. угол между каждой наклонной и перпендикуляром равен 45. вычислите: 1) площадь треугольника авс, если проекции наклонных перпендикулярны; 2) угол между наклонными.
проводим перпендикуляр OK из точки O
имеем 3 прямоугольных треугольника AOK BOK COK
доказываем равенство этих треугольников по 2м сторонам и углу между ними
AO = OB = OC
угол AOK = угол BOK = угол COK = 90
OK - общая сторона
т.к. треугольники равны значит соответствующие стороны тоже равны
длины проекции этих наклонных это AO BO CO
находим по теореме Пифагора