Объяснение:
Определение:
1. Четырехугольник, у которого противоположные стороны попарно параллельны, называется параллелограммом.
Признаки:
2. Две противоположные стороны равны и параллельны.
3. Противоположные стороны попарно равны.
4. Диагонали точкой пересечения делятся пополам.
1. Рассмотрим ΔABC и ΔACD.
AC-общая.
∠1=∠4 (условие)
∠2=∠3 (условие)
⇒ ΔABC = ΔACD (2 признак)
⇒ AB=CD; BC=AD (соответственные элементы)
АВСD - параллелограмм (признак, п.3)
2. ∠1=∠4 (условие) - накрест лежащие при AB и CD и секущей РЕ.
⇒ AB║CD
∠2=∠3 (условие) - накрест лежащие при ВС и AD и секущей МК.
⇒ ВС║AD
AВСD - параллелограмм (определение, п.1)
3. ∠1=∠2 (условие) - накрест лежащие при ВС и AD и секущей BD.
⇒ ВС║AD
∠3=∠4 (условие) - накрест лежащие при AB и CD и секущей АС.
⇒ AB║CD
AВСD - параллелограмм (определение, п.1)
4. Рассмотрим ΔАВС и ΔACD.
∠1=∠2 (условие)
∠3=∠4 (условие)
∠ВСА=180°-(∠1+∠3) (сумма углов Δ)
∠CAD=180°-(∠2+∠4) (сумма углов Δ)
⇒ ∠ВСА=∠CAD
АС - общая
⇒ ΔАВС = ΔACD (2 признак)
⇒ ВС=AD; AB=CD (соответственные элементы)
АВСD - параллелограмм (признак, п.3)
5. ∠1=∠2 (условие) - накрест лежащие при ВС и AD и секущей BD.
⇒ ВС║AD
ВС=AD
АВСD - параллелограмм (признак, п.2)
6. Рассмотрим ΔВОС и ΔAOD.
∠1=∠2 (условие)
∠ВОС=∠AOD (вертикальные)
∠ВСО=180°-(∠1+∠ВОС)
∠OAD=180°-(∠2+∠AOD)
⇒ ∠ВСО=∠OAD
АО=ОС (условие)
⇒ ΔВОС = ΔAOD (2 признак)
⇒BO=OD (соответственные элементы)
АВСD - параллелограмм (признак, п.4)
Цитаты: "Двугранный угол, образованный полуплоскостями измеряется величиной его линейного угла, получаемого при пересечении двугранного угла плоскостью, перпендикулярной его ребру (то есть перпендикулярной к обеим плоскостям). Линейный угол - это угол, образованный пересечением двугранного угла с плоскостью, перпендикулярной к его ребру. Таким образом, чтобы измерить двугранный угол, можно взять любую точку на его ребре и перпендикулярно ребру провести из неё лучи в каждую из граней.
АВ- двугранный угол, точка М удалена от плоскостей на расстояние m, то есть МС=МD=m. DК и CK перпендикулярны AB (теорема о трех перпендикулярах). <DKC- линейный угол данного нам двугранного угла, равного 120*. Проведем МК. Поскольку точка М равноудалена от сторон угла DKC, МК - биссектриса этого угла и <МКС=120° /2=60°.
В прямоугольном треугольнике КМС <MKC=60*, значит <KМC=30°. Следовательно КМ=2КС и по Пифагору 4КС²-КС²=m². Тогда КС=m/√3.
Поскольку МК=2КС , МК=2m/√3 или МК=2m√3/3.
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
АВ+АС=Р-ВС=30-12=18 см.
Пусть АВ=х, тогда АС=18-х.
По теореме биссектрис АВ/АС=ВД/ДС,
х/(18-х)=4/8,
2х=18-х,
3х=18,
х=6.
АВ=6 см - это ответ.