Рассмотрим наш тупоугольный треугольник ABC с известным углом C равным 150° и стороной AC равной 1 см. По условию задачи, перпендикуляр MN опущен к основанию ΔABC, деля сторону AB пополам. Если мы продолжим сторону BC и полученный отрезок соединим с AB, у нас образуется прямоугольный треугольник (нарисован зеленым). При том, что угол C₁ смежный с углом C, а значит равняется 30°. Теперь рассмотрим прям-ный Δ-к ACB. Зная два его угла (90° и 30°), можно найти третий, который равен 60°. У этого треугольника гипотенуза AC равна 1 см, по св-ву катета лежащего напротив угла 30° мы находим сторону AD: AD = 1/2 = 0,5. Сторона DC по т. Пифагора равна √3/2.
Теперь, как можно заметить из рисунка, AD является общей стороной для обоих треугольников. Но нам нужно найти MN, которая параллельна стороне AD. Прямая MN образует Δ-к MBN лежащий внутри большого Δ-ка ABC и данные треугольники являются подобными. Зная, что MN делит сторону AB в отношении 1:2 делаем вывод, что периметр Δ-ка MBN меньше периметра Δ-ка ABC в 2 раза, то же самое касается всех их сторон и площадей. Отсюда можно найти сторону MN:
a/a₁ = b/b₁ = c/c₁ ⇒ AD = 2MN ⇒ MN = 0,5/2 = 0,25
ответ: длина перпендикуляра 0,25 см.
Поделитесь своими знаниями, ответьте на вопрос:
Найдите катеты прямоугольного треугольника , если один из них меньше гипотенузы на 2 см, а второй-на 25 см
По теореме Пифагора:
х^2+(2x)^2=25^2
5x^2=625
x^2=125
x=5v5 (v-корень)
Второй катет=2х=10v5