а) Меньшая высота параллелограмма находится из равнобедренного прямоугольного треугольника АВН (острые углы = 45°). По Пифагору 2*ВН²=АВ². Тогда 2*ВН²=а²*2, отсюда ВН=а. Это и высота параллелепипеда.
б) Угол между плоскостью АВС₁ и плоскостью основания - это двугранный угол, измеряемый градусной мерой линейного угла D1KD, образованный перпендикулярами D1K и DK к ребру АВ. Cинус этого угла равен отношению DD1/KD1. В прямоугольном треугольнике АКD:
<КАD =<KDA = 45°. Значит АК=КD= а√2.
Тогда КD1=√(КD²+DD1²)=√(2а²+а²)=а√3.
Sinα = a/а√3 = √3/3.
ответ: искомый угол равен arcsin(√3/3).
в) Площадь боковой поверхности параллелепипеда равна произведению периметра основания на высоту, то есть Sб=2*(а√3+2а)*а =а²(2+√2).
г) Площадь полной поверхности параллелепипеда равна сумме площадей баковой поверхности и удвоенной площади основания. То есть
Sполн=а²(2+√2)+2*AD*BH=а²(2+√2)+4а² = а²(6+√2).
Поделитесь своими знаниями, ответьте на вопрос:
Докажите неравенство: а)sin30°+cos45°> 1; б)tg25°
(1+√2)/2>1
1+√2>2
1+√2-2>0
-1+√2>0
-1>-√2/*(-1)
1<√2/*(√2)
√2<2.Если извлечь из √2 число, то получится меньше 2, тогда неравенство верное