По свойству отрезков касательных, проведенных из одной точки к одной окружности МК=МN₁; NN₁=NE₁=12; EE₁=EK; где N₁ и E₁ - точки касания окружности с гипотенузой МN и катетом NЕ соответственно.
EK=ЕE₁ =ОК =х - радиус, подлежащий определению. Из данного в условии прямоугольного треугольника свяжем теоремой Пифагора гипотенузу и катеты. (МN=8+12=20; МЕ=8+х; NE=12+х)
МN²=МЕ²+NE²; 20²=(8+х)²+(12+х)²; 400=64+16х+х²+144+24х+х²;
2х²+40х-192=0, сократим на два обе части уравнения. х²+20х-96=0, ПО теореме, обратной теореме Виета х=-24- не подходит по смыслу задачи, не может радиус быть отрицательным. х=4
ответ Радиус равен 4см
По свойству отрезков касательных, проведенных из одной точки к одной окружности МК=МN₁; NN₁=NE₁=12; EE₁=EK; где N₁ и E₁ - точки касания окружности с гипотенузой МN и катетом NЕ соответственно.
EK=ЕE₁ =ОК =х - радиус, подлежащий определению. Из данного в условии прямоугольного треугольника свяжем теоремой Пифагора гипотенузу и катеты. (МN=8+12=20; МЕ=8+х; NE=12+х)
МN²=МЕ²+NE²; 20²=(8+х)²+(12+х)²; 400=64+16х+х²+144+24х+х²;
2х²+40х-192=0, сократим на два обе части уравнения. х²+20х-96=0, ПО теореме, обратной теореме Виета х=-24- не подходит по смыслу задачи, не может радиус быть отрицательным. х=4
ответ Радиус равен 4см
Поделитесь своими знаниями, ответьте на вопрос:
Знайди сторони рівнобедреного трикутника , якщо його периметр 42 см , а бічні сторони на 9 см більша ніж основа
У равнобедреннего треугольникаАВ=ВС.
Пусть АС=х см, тогда АВ=АС=х+9
Р(АВС)=АС+АВ+ВС
Р(АВС)=2(х+9)+х=42
2х+18+х=42
3х = 24
х=8=АС
Тогда АВ и ВС = 8+9 = по 17 см каждая
(проверка 8+17+17 = 42 см)