Объяснение:
Да ладно, напишу решение.
По свойству отрезков касательных из одной точки сразу ясно, что периметр А1В1С (без 1) равен УДВОЕННОМУ отрезку от вершины С до точки касания АС с вписанной окружностью. Это на самом деле уже ВСЁ решение, но я продолжу :))
Надо найти r - вписанной окружности и угол С (точнее, надо найти ctg(C/2));
По формуле Герона считаем площадь треугольника, она равна 6*√6; полупериметр 9; отсюда r = 2*√6/3;
по теореме косинусов
7^2 = 5^2 + 6^2 - 2*5*6*cos(C); откуда cos(C) = 1/5; ctg(C/2) = √6/2;
Поэтому искомая величина равна
2*r*ctg(C/2) = 2*(6*√6)*(√6/2) = 4
Поделитесь своими знаниями, ответьте на вопрос:
An-арифметическая прогрессия. а2=-5; а6-а4=6. найдите s10.
2d=6
d=3
a1+d=-5
a1+3=-5
a1=-8
a10=a1+9d=-8+9*3=-8+27=19
s10=(a1+an)n/2=(-8+19)10/2=55