а) Пусть искомый угол <HAP=α.
<BPA - внешний угол треугольника АРС.
<BPA = (1/2)*<A +<С (внешний угол треугольника равен сумме двух внутренних, не смежных с ним).
<BHA =90° - внешний угол треугольника НАР.
<BHA=α+<BPA. Или α+<BPA=90°. Или
α=90°-(1/2)*<A - <С.(1)
<A=180-<B-<C (сумма внутренних углов треугольника равна 180°).
Тогда из (1):
α=90°-(1/2)*(180-<B-<C) - <С. Или
α=90°-90°+<B/2 +<C/2-<C = <B/2-<C/2.
ответ: искомый угол равен α=|<B-<C|/2, что и требовалось доказать.
Второй вариант:
Пусть искомый угол <HAP=α.
<BPA - внешний угол треугольника АРС.
<BPA = (1/2)*<A +<С (1) (внешний угол треугольника равен сумме двух
внутренних, не смежных с ним).
<BHA =90° - внешний угол треугольника НАР.
<BРA=α+90°. Тогда из (1):
α=(1/2)*<A +<С - 90°. (2)
<A=180-<B-<C (сумма внутренних углов треугольника равна 180°).
Тогда из (2):
α=90°-(1/2)*<B-(1/2)*<C) - 90°+<С. Или
α=<С/2 - <В/2 = |<B-<C|/2.
P.S. Рассматривать все комбинации углов треугольника (в том числе и
тупоугольниго) нет необходимости, так как доказательство будет
подобным. Искомый угол равен модулю разности значений углов
В и С, так как отрицательное значение не удовлетворяет условию.
б). Искомый угол - угол СDE = α.
<CBE - внешний угол треугольника CDB.
<CBE=<DCB+α = >
(1/2)*(180 - <B) =(1/2)*<C + α . =>
α = 90° - (1/2)*<B -(1/2)*<C.
α = 90° - (1/2)*(<B+<C) . =>
2α = 180° - (<B+<C) . =>
2α = <A.
α = <A/2. Что и требовалось доказать.
в) CD и ВЕ - биссектрисы.
Искомый угол - угол α.
α = 180° - (1/2)*(В+С) (сумма внутренних углов треугольника
ВОС=180°). =>
2α =360° -(<B+<C) = 180°+180°-(<B+<C).
<A = 180°-(<B+<C).
2α = 180° + <A.
α = 90°+<A/2, что и требовалось доказать.
Поделитесь своими знаниями, ответьте на вопрос:
Укажите номера верных утверждений: 1)если при пересечении 2 прямых третьей прямой соответственные углы равны 37 градусов, то эти две прямые параллельны. 2)через любые три точки приходит не более одной прямой. 3)сумма вертикальных углов равна 180 градусов
2)по определению через любые ДВЕ точки проходит не более одной прямой, значит и через три тоже проходит не более одной прямой, истинно
3)ложно