Вершины △ABC разбивают описанную окружность на три дуги. Биссектрисы углов треугольника делят эти дуги пополам (два равных вписанных угла опираются на равные дуги), точки A1, B1, C1 - середины дуг.
Вписанные углы ∠BB1C1, ∠BB1A1, ∠A1 опираются на половины дуг AB, BC, AC, следовательно сумма вписанных углов равна четверти окружности, 90.
∠BB1C1+∠BB1A1+∠A1 =∪AB/4+∪BC/4+∪AC/4 =360/4 =90
AA1 и B1C1 пересекаются в точке H. В △A1B1H сумма углов ∠A1 и ∠B1 равна 90, треугольник прямоугольный, AA1 и B1C1 пересекаются под прямым углом.
Аналогично BB1⊥A1C1, CC1⊥A1B1. Биссектрисы △ABC являются высотами △A1B1C1. Центр вписанной окружности (пересечение биссектрис) △ABC является ортоцентром (пересечением высот) △A1B1C1.
Окружность №1: x²+y²=1. Центр (0; 0), радиус 1.
Окружность №2: x²+(y-7)²=4. Центр (0; 7), радиус 2.
Для удобства и полного понимания ситуации строим данные окружности (изображение 1). Рассмотрим все возможные варианты:
1) Окружность касается обоих данных окружностей внешним образом (изображение 2). В таком случае ее центр (0; 3), радиус 2.
x²+(y-3)²=4
2) Окружность касается обоих данных окружностей внутренним образом (изображение 3). В таком случаем ее центр (0; 4), радиус 5.
x²+(y-4)²=25
3) Окружность касается первой окружности внутренним образом, второй внешним (изображение 4). В таком случае ее центр (0; 2), радиус 3.
x²+(y-2)²=9
4) Окружность касается первой окружности внешним образом, второй внутренним (изображение 5). В таком случае ее центр (0; 5), радиус 4.
x²+(y-5)²=16
Поделитесь своими знаниями, ответьте на вопрос:
Большая диагональ прямоугольной трапеции делит высоту, проведенную из вершины тупого угла, на отрезки длиной 20 см и 12 см. большая боковая сторона трапеции равна ее меньшему основанию. найдите площадь трапеции.
Пусть(Не пиши пусть) СН-Высота
Диагональ ВD пересекает СН в точке О, СО=20 см, ОН=12 см.
ВС=СD.
∆ ВСD - равнобедренный угол СВD=углу СDВ.
В то же время ∠СВО=∠НDО как накрестлежащие при пересечении параллельных прямых секущей, углы при О - равны как вертикальные. прямоугольные треугольники ВСО и НDО подобны.
HD:ВС=ОH:СО=12\20=3/5
Примем ВС=СD=а.
Тогда НD=3а\5
Из ∆ СНD по т.Пифагора
СD²=СН²+НD²
а²=1024+9а²\25
16а²\25=1024
Разделим обе стороны уравнения на 16, извлечем корни:
а\5=8
а=40 см
АD=а+3а\5=1,6а
АD=40х1,6=64 см
S=(BC+AD)хCH:2=104х(20+12):2=1664 см²
х-это умножение)