Трапеция ABCD с основанием AD вписана в окружность с центром О.Найдите углы трапеции,если ∠AOD=100°,∠BOC=80° и точка О лежит вне трапеции.
Объяснение:
Вписанная в окружность трапеция является равнобедренной.
Значит АВ=CD стягивают равные дуги → ∪AB=∪CD
∠BOC=80° -центральный → ∪ВС=80°
∠AOD=100°--центральный → ∪АВD=100° ⇒ ∪AB=∪CD= =10°.
∠BAD вписанный и опирается на дугу ∪BCD=∪BC+∪CD=80°+10°=90°.
∠BAD=1/2*90°=45°. Значит ∠СDA=45° и ∠СВA=45° (углы при основании равны )
Сумма углов 4-х угольника 360°. Поэтому ∠АВС=∠ВСD= =135°
1. Найдем координаты векторов АВ, АС, АД, везде, где речь идет о векторах, над ними ставьте черту или стрелку. Но у меня к сожалению нет такой возможности. Чтобы найти их координаты, надо от координат конца вычесть координаты начала вектора, АВ(-2-3; 1-2;3-4); АВ(-5;-1;-1)
АС(-1;-4;-5); АД(-1;3;-) Объем найдем, как 1/6 от модуля детерминанта или определителя, где в первой строке поставим координаты вектора АВ, во второй АС , в третьей АД, и вычислим этот определитель по правилу треугольника.
v=(1/6)*║-5 -1 -1 ║
║-1 -4 -5║
║ -1 3 1║, здесь линии должны быть непрерывными, как в модуле, а раскрывается этот определитель так
(1/6)*(модуль от (20-5+3+4-1-75))= модуль минус 54/6=9, т.е. объем равен
9 ед. куб. Из формулы объема пирамиды, известного из курса средней школы, v=s*h/3, находим высоту h=3v/s=3*9/15.3=9/5.1=30/17≈1.76
Поделитесь своими знаниями, ответьте на вопрос:
Втреугольнике abc угол a равен 50 градусам , а угол b в 12 раз меньше угла c найдите углы b и c
180-х-12х-50=0
130=13х
x=130/13
x=10
ответ: угол В=10 градусов, угол С=120 градусов