1. Сторона правильного шестиугольника равна радиусу описанной окружности.
а₆ = Р₆ / 6 = 48 / 6 = 8 м
R = a₆ = 8 м
Радиус окружности, описанной около квадрата, равен половине диагонали квадрата:
d = a₄√2
d / 2 = R
a₄√2 = 8
a₄ = 8 / √2 = 8√2 / 2 = 4√2 м
2. Площадь сектора:
S = πR² · α / 360°
S = π · 12² · 120° / 360° = π · 144 / 3 = 48π см²
3. Сторона правильного шестиугольника равна радиусу описанной окружности.
а₆ = R
Правильный шестиугольник диагоналями, проведенными через центр, делится на шесть равных равносторонних треугольников. Площадь одного треугольника:
S = S₆ / 6 = 72√3 / 6 = 12√3 см²
a₆²√3 / 4 = 12√3
a₆² = 48
a₆ = √48 = 4√3 см
R = 4√3 см
Длина окружности:
C = 2πR = 2 · π · 4√3 = 8√3π см
Поделитесь своими знаниями, ответьте на вопрос:
Вравнобедренном треугольнике abc точка p середина высоты опущенной на основание bc. прямая bp пересекает боковую сторону ac в точке m. докажите что cm=2am
AH - высота и медиана
AD||BC
△APD~△HPB (по накрест лежащим углам при параллельных)
AD/BH =AP/PH =1
AD=BH =BC/2
△AMD~△CMB
AM/CM =AD/BC =1/2
Если приравнять пропорции треугольников по AD - получим теорему Менелая
CM/MA *AP/PH *HB/BC =1