1) в первом случае, внешние накрест лежащие углы равны, внутренние накрест лежащие углы тоже равны , допустим это угол Х и он равен 60°, и внутренний угол (120°) и этот угол Х в сумме равны 180°, значит прямые параллельны
Объяснение:
2) во втором случае, внешние накрест лежащие углы равны, поэтому они параллельны.
т.е если равны внешние накрест лежащие углы, то обязательно будут равны и внутренние накрест лежащие углы. И для этого случая теорема доказана. Если при пересечении двух прямых третьей соответственные углы равны, то прямые параллельны
Поделитесь своими знаниями, ответьте на вопрос:
Выписано несколько последовательных членов прогрессии: ..; 64; x; 4; -1; найдите x
Пусть в ΔABC, AK — высота, AN — биссектриса ∠A, AE — медиана.
Из точки A к прямой BC проведены перпендикуляр AK (высота) и две наклонные. Cледовательно точка N принадлежит либо KB, либо KE.
Точка N совпадает с K, тогда AN = AK < AE.
Точка N совпадает с E, тогда AN = AE > AK.
Точка N лежит между точками K и E, тогда AK < AN < AE (так как ее проекция NK меньше EK — проекции AE).
По доказанному в задаче № 24, AN не может быть больше AE, т.е. точка N не может лежать между E и С Что и требовалось доказат