В условии, очевидно, ошибка: в прямоугольном параллелепипеде все грани прямоугольники, но тогда в прямоугольном треугольнике ABD гипотенуза (BD = 4 см) меньше катета (АD = 6 см).
Вероятно, в задаче дан прямой параллелепипед. Тогда его основания - параллелограммы, а боковые грани - прямоугольники. Решим задачу для прямого параллелепипеда.
Итак, в основании параллелограмм, в котором
АВ = CD = 3 см,
BC = AD = 6 см,
BD = 4 см - меньшая диагональ параллелограмма.
Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон:
AC² + BD² = 2(AB² + AD²)
AC² = 2(AB² + AD²) - BD² = 2(9 + 36) - 16 = 90 - 16 = 74
AC = √74 см
B₁D - меньшая диагональ параллелепипеда (так как ее проекция меньше).
ΔBB₁D: ∠B₁BD = 90°,
tg∠BDB₁ = BB₁ / BD
BB₁ = BD · tg60° = 4 · √3 = 4√3 см
АА₁ = ВВ₁ = 4√3 см
ΔAA₁C: ∠A₁AC = 90°, по теореме Пифагора
A₁C = √(AA₁² + AC²) = √(48 + 74) = √122 см
Поделитесь своими знаниями, ответьте на вопрос:
Решить ! все боковые ребпа пирамиды наклонены к площине основы под углом 45 градусов. найдите об'ем пирамиды, если в ее основании лежит прямоугольный треугольник с катетом 8 см и гипотенузой - 10 см. заранее !
Вычислить площадь основания по формуле Герона
p=½ (a+b+c)=½ 24=12p=½ (a+b+c)=½ 24=12
12*(12-8)(12-6)(12-10)=12*6*4*2=576
S=√576=24см²
Затем надо вычислить площадь боковой поверхности.
Периметр основания равен 24.
При этом принять во внимание, что:
Если боковые грани наклонены к плоскости основания под одним углом, то:
а) в основание пирамиды можно вписать окружность, причём вершина пирамиды проецируется в её центр;
б) высоты боковых граней равны;
в) площадь боковой поверхности равна половине произведения периметра основания на высоту боковой грани. Высоту найти любой стороны, поскольку они равны. Затем уже площадь боковых граней и сложить с площадью основания.