Dms161964937
?>

Медиана cd треугольника abc делит его на два треугольника. докажите, что площадь треугольника abc вдвое больше, чем площадь треугольника acd.

Геометрия

Ответы

kot271104
Площадь равна половине произведения основания на высоту.
Высоты треугольников из условия задачи, опущенные из С совпадают.
Основание AD треугольника ACD вдвое меньше, чем основание АВ треугольника АВС. 
Поэтому произведение основания на высоту треугольника АВС вдвое больше, чем треугольника ACD. 
Поэтому площадь ABC будет вдвое больше, чем ACD
DmitrievnaVera

1) Концы отрезка, который не пересекает плоскость, отдалены от нее на 3 см и 8 см. Проекция отрезка на плоскость равна 12 см. Найти длину отрезка. 

-----

Обозначим отрезок АВ. Расстоянием от точки до плоскости является длина отрезка, проведенного к ней перпендикулярно. 

АА1 и ВВ1 перпендикулярны плоскости, следовательно, перпендикулярны В1А1. 

АА1║ВВ1, 

АВВ1А1 - прямоугольная трапеция. 

ВВ1=3 см.АА1=8 см,

ВС║В1А1 ⇒ А1С=ВВ1=3 см, АС=8-3=5 см. 

ВС=В1А1=12 см. 

Катеты прямоугольного ∆ АВС относятся как 5:12 - треугольник из Пифагоровых троек, ⇒гипотенуза АВ=13 см. 

                    * * *

2) Из точки, которая находится на расстоянии 6 см от плоскости, проведены две наклонные. Найти расстояние между основаниями наклонных, если угол между каждой наклонной и ее проекцией равен 30°, а угол между проекциями наклонных 120°. 

-------

Наклонные АВ и АС,  расстояние до плоскости АН=6 см,  ∠АВН=∠АСН=30°

ВН=СН=АН:tg30°=6√3

∆АНС равнобедренный, угол ВНС=120° ( дано). 

Проведем высоту НМ к основанию ВС. Высота в равнобедренном треугольнике - биссектриса и медиана. ⇒ ∆ ВНМ=∆ СНМ, ∠ВНМ=СНМ=60°

ВМ=ВН•sin60°=6√3•√3/2=9 

BC=2•BМ=18 см (по т.косинусов ВС также равно 18 см)

                     * * * 

3) Из вершины А прямоугольника АВСD со сторонами 7 см и 14 см к его плоскости проведен перпендикуляр АМ=7 см. Найти расстояние от точки М до прямых DС и DB.

--------

Примем АВ=14 см, АD=7 см. Расстояние от точки до прямой измеряется длиной отрезка, проведенного перпендикулярно от точки до прямой. По т. о 3-х перпендикулярах МD пп DC, МВ пп ВС.

В прямоугольном ∆ MAD катеты равны, следовательно, он равнобедренный с острыми углами, равными 45°. 

MD=AD:sin45°=7√2.

Из прямоугольного ∆ МАВ расстояние МВ=√(AB²+AM²)=√(196+49)=7√5 см

Расстояние от М до BD отрезок МН, перпендикулярный диагонали ABCD.

По т. о 3-х перпендикулярах МН⊥DB,⇒ его проекция АН⊥DB.

АН=AD•AB:BD

∆ ADB=∆ MAB по двум катетам,⇒ DB=MB=7√5

AH=7•14:7√5=14/√5

MH=√(AM²+AH²)=√(441/5)=21/√5=4,2√5 или ≈ 9,39 см



3-й варіант 1. кінці відрізка, який не перетинає площину, віддалені від неї на 3 см і 8 см. проекція
Елена_Кошевой

Найти расстояние между прямыми L1 и L2

L1:   4x-3y-12=0.

L2: 4x-3y+20=0.  

Решение.

Прямая L1 имеет свободный член C1=-12 и направляющий вектор

n1={-В1, А1}={3; 4}.  

Прямая L2 имеет свободный член C2=20 и направляющий вектор

n2={-В2, А2}={3; 4}.  

Так как нормальные векторы прямых L1 и L2 совпадают, то расстояние между ними можно вычислить формулой:

d  =  | C 1  − C 2 |  / √(A ² + B²).                                                        (1)

Подставим значения A1, B1, C1, C2 в (1):

d = | − 12 − 20 |  / (√ ( 4  ² +(-3) ²)  = 35/5 =  6,4

Расстояние между прямыми равно d=6,4.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Медиана cd треугольника abc делит его на два треугольника. докажите, что площадь треугольника abc вдвое больше, чем площадь треугольника acd.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

hellomaxim
imiryakubov
luxoutlet
Yurevich1344
a800000
Kuznetsova702
oskina3
yna21289
Наталья
Yevgenevich775
petria742
Babushkina27
spz03
klimenko05
Владислава531