Дано: ∠А = ∠D = 60°, AB = CD = 12 см, AD = 18 см.
Найти: BC, MN (средняя линия)
Проведём высоты BH и CP. Рассмотрим треугольник ABH:
∠А = 60° по условию, ∠АВН = 90°; по теореме о сумме углов треугольника получаем: ∠АВН = 90° - 60° = 30°. АН = 0,5 АВ = 6 см, как катет прямоугольного треугольника, лежащий против угла в 30°. Так как трапеция ABCD - равнобедренная, то PD = AH = 6 см.
НР = AD - AH - PD = 18 - 12 = 6 см. BC = HP = 6 см, как противоположные стороны прямоугольника.
Средняя линяя трапеции равна полу сумме оснований ⇒ MN = (ВС + НР)/2 = (18 + 6)/2 = 12 см.
ответ: MN = 12 см, BC = 6 см.
Поделитесь своими знаниями, ответьте на вопрос:
Ко – перпендикуляр к плоскости α, км и кр – наклонные, ом и ор – их проекции на плоскость α, причём сумма их длин равна 15 см. найти расстояние от точки к до плоскости α, если км = 15 см, кр = см.