barg562
?>

Решите , 1.найдите нули функции: f (x) = -x^2 +2x + 15. 2. спростите выражение: 1 - tga*cosa 3. розвяжите уравнение: 3^x+2 + 3^x = 30

Геометрия

Ответы

jenek-f
Прикрепляю........................................
Решите , 1.найдите нули функции: f (x) = -x^2 +2x + 15. 2. спростите выражение: 1 - tga*cosa 3. розв
Plyushchik_Nikita
 АВ=АС=b, BC=a, биссектрису BL=d, угол ABL=альфа,  ABC=ACB=(2альфа) BAC=(180-4альфа) < 45 градусов, т.е. 2 < 90 градусов, угол ALB=(3альфа)по т.синусов: a*sin(2альфа) = b*sin(180-4альфа)a = b*sin(180-4альфа) / sin(2альфа) = b*sin(4альфа) / sin(2альфа) = = 2*b*cos(2альфа) AL*sin(3альфа) = b*sin(альфа)d = BC - AL = a - b*sin(альфа) / sin(3альфа) = = 2*b*cos(2альфа) - b*sin(альфа) / sin(3альфа) = = b* ( 2*cos(2альфа) - sin(альфа) / sin(3альфа) ): d = 2*a*b*cos(альфа) / (a+b)a+b = 2*b*cos(2альфа) + b = b*(2*cos(2альфа) + 1)d = 2*2*b*cos(2альфа)*b*cos(альфа) / ( b*(2*cos(2альфа) + 1) ) = = 4*b*cos(2альфа)*cos(альфа) / (2*cos(2альфа) +  иsin(альфа) / sin(3альфа) = = 2*cos(2альфа) - 4*cos(2альфа)*cos(альфа) / (2*cos(2альфа) + 2*cos(2альфа)*(4*(cos(альфа))^2 - 1) = 1 + 4*cos(2альфа)*cos(альфа). cos(альфа) = +- 1/2(см. выше... cos(альфа)  0.94 (0.9396)40, 40, 100
gernovoy
Обозначим стороны АВ=АС=b, BC=a, биссектрису BL=d, угол ABL=альфа, тогда углы при основании треугольника ABC=ACB=(2альфа)угол при вершине BAC=(180-4альфа)и альфа должен быть < 45 градусов, т.е. 2альфа должен быть < 90 градусов, т.к. в равнобедренном треугольнике угол при основании не может быть тупым...угол ALB=(3альфа)по т.синусов: a*sin(2альфа) = b*sin(180-4альфа)отсюда a = b*sin(180-4альфа) / sin(2альфа) = b*sin(4альфа) / sin(2альфа) = = 2*b*cos(2альфа)по т.синусов: AL*sin(3альфа) = b*sin(альфа)по условию задачи d = BC - AL = a - b*sin(альфа) / sin(3альфа) = = 2*b*cos(2альфа) - b*sin(альфа) / sin(3альфа) = = b* ( 2*cos(2альфа) - sin(альфа) / sin(3альфа) )для длины биссектрисы справедлива формула: d = 2*a*b*cos(альфа) / (a+b)отдельно запишем a+b = 2*b*cos(2альфа) + b = b*(2*cos(2альфа) + 1)d = 2*2*b*cos(2альфа)*b*cos(альфа) / ( b*(2*cos(2альфа) + 1) ) = = 4*b*cos(2альфа)*cos(альфа) / (2*cos(2альфа) + 1)если приравнять два получившихся равенства для биссектрисы d, то длина стороны b сократится и останется тригонометрическое равенство:sin(альфа) / sin(3альфа) = = 2*cos(2альфа) - 4*cos(2альфа)*cos(альфа) / (2*cos(2альфа) + 1)после несложных преобразований можно получить равенство:2*cos(2альфа)*(4*(cos(альфа))^2 - 1) = 1 + 4*cos(2альфа)*cos(альфа)это выражение можно привести к полному уравнению четвертой степени относительно косинуса альфа одно из решений здесь очевидно... cos(альфа) = +- 1/2но этот угол не может быть в равнобедренном треугольнике (см. выше...)))если решать оставшееся кубическое уравнение, то единственным подходящим решением получается cos(альфа) =примерно= 0.94 (0.93969)это угол около 20 градусовтогда углы данного равнобедренного треугольника 40, 40, 100

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Решите , 1.найдите нули функции: f (x) = -x^2 +2x + 15. 2. спростите выражение: 1 - tga*cosa 3. розвяжите уравнение: 3^x+2 + 3^x = 30
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

margusha1974
Александр Сергей
asi19776
sveta1864
cheberyako2013
nuralievelsh
stolle16
shelep19789
nairahay
uglichdeti
Воронина
Amulenkov
zodgener
Анна1169
Daletskaya Sergei1121