Центр окружности, описанной вокруг треугольника, находится в точке пересечения срединных перпендикуляров. Центр окружности, вписанной в треугольник, находится в точке пересечения его биссектрис. Так как срединные перпендикуляры правильного треугольника - его высоты и биссектрисы, центры описанной и вписанной окружности совпадают. Радиус описанной вокруг правильного треугольника окружности равен 2/3 его высоты. Радиус вписанной равен половине радиуса описанной окружности, т.е. 1/3 высоты ( медианы, биссектрисы). Высота правильного треугольника равна (а√3):2, радиус вписанной окружности r=[(а√3):2]:3, где а - сторона треугольника. ⇒ r=[6√3•√3):2]:3=18:6=3 Площадь круга находят по формуле: S=π•r² S=π•3²=9π
rendikalogistic
05.04.2023
Пусть трапеция АВСD и ее диагонали пересекаются в точке О. Если трапеция является равнобедренной, то прямая, которая проходит через середины оснований, перпендикулярна основаниям и длины диагоналей равны(свойство). Тогда прямоугольные треугольники АОD и ВОС (прямые углы АОD и ВОС - дано) равнобедренные и углы прилежащие к гипотенузам равны 45°. Следовательно, высоты этих треугольников ОН=АD/2, а ОР=ВС/2. Сумма этих высот равна высоте трапеции h. Площадь трапеции равна: S=(AD+BC)*h/2. AD+BC=36 (дано). Подставим в формулу площади значение h=OH+ОP=(1/2)(AD+BC) и получим:S=(AD+BC)*(AD+BC)/4 или 36*36/4=324.
contact
05.04.2023
1. Теорема 1 (первый признак параллельности) Если при пересечении двух прямых третьей накрест лежащие(внутренние или внешние) углы равны, то такие прямые параллельны.
Доказательство:
Дано: прямые AB, CD и MN; угол 1= угол 2 . Требуется доказать: AB||CD.
Возьмем точку O — середину MN и проведем OK перпендикулярно CD. Докажем, что OK перпендикулярно AB. Треугольник OKN= треугольник OLM (по стороне и двум прилежащим углам). В них угол OLM= углу OKN. Но угол OKN = 180 градусов. Следовательно, KL перпендикулярно AB: AB||CD. Если будет дано, что равны внешние накрест лежащие углы, то обязательно будут равны и внутренние накрест лежащие углы.
2. Поскольку сумма всех углов треугольника равна 180 градусам, то 180 - 110 = 70 70 / 2 = 35 ответ: углы треугольника 35 и 35.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Сторона правильного треугольника равна 6 корней из 3. вычислите площадь вписанного в него круга.
Центр окружности, вписанной в треугольник, находится в точке пересечения его биссектрис.
Так как срединные перпендикуляры правильного треугольника - его высоты и биссектрисы, центры описанной и вписанной окружности совпадают.
Радиус описанной вокруг правильного треугольника окружности равен 2/3 его высоты.
Радиус вписанной равен половине радиуса описанной окружности, т.е. 1/3 высоты ( медианы, биссектрисы).
Высота правильного треугольника равна (а√3):2, радиус вписанной окружности r=[(а√3):2]:3, где а - сторона треугольника. ⇒
r=[6√3•√3):2]:3=18:6=3
Площадь круга находят по формуле:
S=π•r²
S=π•3²=9π