1) 18 см².
2) а) 225 см²; б) 15 см.
3) 36 см.
Объяснение:
1. S=ah. h - высота. h= ВН=AB*Cos45° =3*√2/2;
S=6√2*3√2/2=18 см².
***
2. Пусть АВ=9х. Тогда ВС=25х.
Р(AВСD) =2(AB+BC);
2(9x+25x)=68;
34x=34;
x=1;
AB=9*1=9 см.
ВС=25*1=25 см.
а) S= ah=25*9= 225 см².
б) S (квадрата )=а²; а²=225 см² ; а=√225=15 см.
***
3. S=ah, где а - сторона параллелограмма, h=2см (или 7 см).
Найдем основание AD (или CD).
S=28 см²;
2*AD=28;
BC=AD=28/2=14 см.
CD*7=28; AB=CD=28/7= 4 см.
Р(ABCD)=2(AB+BC)=2(4+14)=2*18=36 см.
Дано: Δ АВС∠С = 90°АК - биссектр.АК = 18 смКМ = 9 смНайти: ∠АКВРешение. Т.к. расстояние от точки измеряется по перпендикуляру, то опустим его из (·) К на гипотенузу АВ и обозначим это расстояние КМ. Рассмотрим полученный Δ АКМ, Т.к. ∠АМК = 90°,то АК гипотенуза, а КМ - катет. Поскольку, исходя из условия, катет КМ = 9/18 = 1/2 АК, то ∠КАМ = 30°. Т.к. по условию АК - биссектриса, то ∠САК =∠КАМ = 30° Рассмотрим ΔАКС. По условию ∠АСК = 90°; а∠САК = 30°, значит, ∠АКС = 180° - 90° - 30° = 60° Искомый ∠АКВ - смежный с ∠АКС, значит, ∠АКВ = 180° - ∠АКС = 180° - 60° = 120° ответ: 120°
Поделитесь своими знаниями, ответьте на вопрос:
Найдите синус, косинус и тангенс большего острого угла прямогольного треугольника с катетами 7 см и 24 см
Синус - это отношение противолежащего катета к гипотенузе. Косинус- это отношение прилежащего катета к гипотенузе, тангенс - это отношение противолежащего катета к прилежащему. Больший угол лежит против большей стороны. По теореме Пифагора найдем гипотенузу
гип=корню из 49+576 = 25
Син = 24\25=0.96
Кос=7\25=0.28
танг=24\7=3.42