Объяснение:
S(бок)= S(МDА)+S(МDС)+S(МАВ)+S(МСВ)
1)Т.к. МD⊥(АВС) , то МD⊥DА , МD⊥DС.
Δ МDА= МDС как прямоугольные по 2-м катетам : МD-общая, АD=DС как стороны квадрата , S(МDА)=S(МDС)=1/2*20*15=150(см²).
2) МD⊥( АВС), DА⊥АВ , значит МА⊥АВ по т. о 3-х перпендикулярах⇒ΔМАВ-прямоугольный.
МD⊥( АВС), DС⊥СВ , значит МС⊥СВ по т. о 3-х перпендикулярах⇒ΔМСВ-прямоугольный.
3) ΔМАВ= ΔМСВ, как прямоугольные по катетам МА=МС=25 и общей гипотенузе МВ. Поэтому S(МАВ)=S(МСВ)=1/2*20*25=250 (см²).
4)S(бок)= 2*150+2*250=800 (см²).
Прямоугольник ТКРС.
∠КАВ = 20°
∠ВСР = 30°
АМК = 20°
Найти:углы △АВС.
Решение:Прямоугольник - геометрическая фигура, у которой все углы прямые.
=> ∠КТС = ∠ТСР = ∠СРК = ∠РКТ = 90°
Сумма смежных углов равна 180°.
∠РКТ смежный с ∠ТКМ = 180° - 90° = 90°
=> △АМК - прямоугольный.
Сумма острых углов прямоугольного треугольника равна 90°.
=> ∠МАК = 90° - 20° = 70°
Сумма смежных углов равна 180°.
∠МАК смежный с ∠КАС => ∠КАС = 180° - 70° = 110°
Так как ∠КАВ = 20°,по условию => ∠ВАС = 110° - 20° = 90°
=> △ВАС - прямоугольный.
Сумма острых углов прямоугольного треугольника равна 90°
=> КВА = 90° - 20° = 70°
Сумма острых углов прямоугольного треугольника равна 90°
=> ∠СВР = 90° - 30° = 60°
Сумма смежных углов равна 180°.
∠КВА смежный с ∠АВР => ∠АВР = 180° 70° = 110°
Так как ∠СВР = 60° => ∠АВС = 110° - 60° = 50°
Сумма острых углов прямоугольного треугольника равна 90°
=> ∠ВСА = 90° - 50° = 40°
ответ: 90°, 50°, 40°.Поделитесь своими знаниями, ответьте на вопрос:
Найдите высоту наклонной призмы, объем который равен 12 см2, а в основании лежит квадрат со стороной 2 см.
Т.к. у квадрата все стороны равны, то Sосн=a^2=2^2=4
h=V/Sосн=12/4=3
ответ: 3