Вравнобедренную трапецию с острым углом 60, одно из оснований которой на 4 больше другого, вписана окружность. найдите произведение длин диагоналий трапеции
Опустим высоту ВН. Высота равнобедренной трапеции, опущенная из тупого угла, делит большее основание на отрезки, меньший из которых равен полуразности, больший - полусумме оснований.
АН=4:2=2.
ВН=АН•tg60°=2√3
ВН - диаметр вписанной окружности. r=√3.
Продолжив боковые стороны трапеции до их пересечения в точке К, получим равносторонний ∆ АКD с вписанной в него окружностью. Формула радиуса вписанной в правильный треугольник окржуности
r=a√3):6,
√3=a√3:6, откуда а=6. АD=АК=DК=6
НD=6-АН=4
Диагонали равнобедренной трапеции равны. АС=BD
ВD•BD=BD²
BD²=BH²+HD²=(2√3)²+4²=28
Баранов955
27.05.2022
Тебе дан равнобедренный треугольник, у равнобедренного треугольника 1 боковая сторона = второй, боковая сторона ас=12 см, значит св=12. Почему св= 12? Так как угол С 120 градусов, значит он больше 90 и его нужно указать вверху треугольника. Далее проводишь биссектрису CH. Чтобы найти биссектрису должен(а) записать соотношение AC/CH=CH/CB и выражаешь CH(так как записана 2 раза то у тебя получается квадрат биссектрисы). CH(в квадрате)=ас*св= 12*12=144 см(это бисстектр в квадрате) CH=12 см Так как CH биссектриса, то она делит угол на 2 равные части, то есть 120:2=60. Мы знаем, что биссектриса образовывает угол в 90 градусов, угол H= 90, найдем угол А. Сумма углов треугольника = 180, чтобы найти угол А надо из 180 вычесть 90 и 60= 30 градусам. Катет лежащий против угла в 30 градусов равен половине гипотенузы CH= 12:2 = 6 см
Иван1764
27.05.2022
Расстояние от точки до прямой находится на перпендикуляре к прямой))) основания трапеции параллельны, т.е. для них перпендикуляр общий... этот перпендикуляр будет состоять из двух высот для треугольников, опирающихся на основания трапеции... одно основание меньше, другое больше --- это дано))) треугольники, опирающиеся на основания трапеции подобны --- у них равные углы (вертикальный и накрест лежащие при параллельных основаниях трапеции))) следовательно, существует коэффициент подобия, равный отношению сторон, в том числе и оснований трапеции... k = a / b, a < b ---> k ≠ 1 этот же коэффициент связывает и высоты подобных треугольников, и получим, что в меньшем треугольнике и высота меньше))) ЧиТД
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Вравнобедренную трапецию с острым углом 60, одно из оснований которой на 4 больше другого, вписана окружность. найдите произведение длин диагоналий трапеции
Обозначим вершины трапеции АВСD, АВ=СD, АD - ВС=4.
Опустим высоту ВН. Высота равнобедренной трапеции, опущенная из тупого угла, делит большее основание на отрезки, меньший из которых равен полуразности, больший - полусумме оснований.
АН=4:2=2.
ВН=АН•tg60°=2√3
ВН - диаметр вписанной окружности. r=√3.
Продолжив боковые стороны трапеции до их пересечения в точке К, получим равносторонний ∆ АКD с вписанной в него окружностью. Формула радиуса вписанной в правильный треугольник окржуности
r=a√3):6,
√3=a√3:6, откуда а=6. АD=АК=DК=6
НD=6-АН=4
Диагонали равнобедренной трапеции равны. АС=BD
ВD•BD=BD²
BD²=BH²+HD²=(2√3)²+4²=28