В прямоугольном параллелограмме квадрат ее диагонали равен сумме квадратов длин ее сторон.
А1С2 = АА12 + АД2 + СД2.
АА12 = А1С2 – АД2+ СД2 = 676 – 64 – 36 = 576.
АА1 = 24 см.
ответ: Боковое ребро равно 24 см.
второй
ABCDA1B1C1D1 - параллелепипед
1) основание ABCD:
в треугольнике АВС
L B = 90 град.
AB = 6 см
BC = 8 см =>
AC^2 = AB^2 + BC^2 = 6^2 + 8^2 = 100 = 10^2 =>
AC = 10 см - диагональ основания
2) В треугольнике ACC1:
L ACC1 = 90 град.
AC = 10 см
AC1 = 26 см =>
CC1 = AC1^2 - AC^2 =
= 26^2 - 10^2 =
= (26+10)(26-10) =
= 36*16 = 6^2 * 4^2 =
= (6*4)^2 = 24^2 =>
CC1 = 24 см - высота параллелепипеда
Поделитесь своими знаниями, ответьте на вопрос:
Основою піраміди є рівносторонній трикутник зі стороною √(√(15)-√( одна з бічних граней є рівностороннім трикутником і перпендикулярна до площини основи. визначити бічну поверхню піраміди.
DABC пирамида ;
ΔABC и ΔDAB равносторонние ;
AC= BC =AB = DA = DB =√(√15 -√3 ) ;
(DAB) ⊥ (ABC) .
-------------------------
S(бок) - ?
S(бок) = S(ΔDAB) +S(ΔDAC)+S(ΔDBC).
(DAB) ⊥ (ABC) ⇒CH ⊥AB , DH ⊥ AB и ∠CHD =90°.
ΔABC =ΔABD
AH = BH =a/2 ; CH =DH =√(a² -(a/2)² ) =√(a² -a²/4 ) =(a√3) /2 .
По теореме Пифагора из ΔCHD :
CD =√(CH² +DH²) =√(2CH²)= CH√2 =(a√3) /2 *√2 =(a√6) /2 .
ΔDAC= ΔDBC_равнобедренные .
Вычислим площадь треугольника DAC. Проведем высоту AM : AM ⊥ DC
Эта высота одновременно и медиана DM =CM =CD/2 = (a√6) /4.
Из ΔCAM :
AM =√(AC² - CM²) = √(a² - 6a² /16) =(a√10) /4.
S(ΔDAC) =CD*AM /2 = CM*AM = (a√6) /4 *(a√10) /4 =a²√(60)/16 =(a²√15)/8.
S(бок) = S(ΔDAB) +S(ΔDAC)+S(ΔDBC) = AB*DH /2 +2S(ΔDAC) =
(a²√3)/4 +(a²√15)/4 =a² (√5+1)*(√3)/ 4 =(√(√15 -√3) )² * (√5+1)*(√3)/ 4=
(√15 -√3) * (√5+1)*(√3)/ 4 = √3(√5-1)(√5+1)*√3 / 4 =3*(5-1)/4 = 3.
ответ : 3 ед.площади .
.