см рис. во вложении. Обозначим середину ВС точкой К. Известно, что угол, опирающийся на диаметр является прямым. Для данного треугольника угол ВКМ - прямой. Медиана совпадает с высотой в равнобедренном треугольнике, значит МС=МВ и диаметр описанной окружности в два раза больше диаметра заданной, потому что точка М является центром описанной окружности треугольника. МК - срединный перпендикуляр и МТ тоже срединный перпендикуляр. Это видно из второго рисунка, там показаны конгруэнтные треугольники. В пересечении срединных перпендикуляров находится центр описанной окружности. А можно и еще проще рассуждать: ВМ = МС = 3, АМ = МС = 3. Расстояние от точки М до вершин треугольника АВС равное, значит М - центр описанной окружности.
ответ диаметр равен 6.
Поделитесь своими знаниями, ответьте на вопрос:
площадь треугольника mnk равна 40 см в квадратных на стороне MK взята точка О так что и мо:ок=3/5 с центром в точке О проведена окружность касающаяся стороны nk найти nk если радиус равен 5 см
пусть радиус описанной окр. вокруг АВС будет R1=5
а вокруг АОВ R2=5√2
во-первых , ∠АОВ=90+С/2 (это можно доказать путем нехитрых вычислений)
по теореме синусов в треуг. АВС АВ/sinC=2R1 AB=10sinC
AB=10*2sin(C/2)*cos(C/2)
в треуг АОВ AB/sin ∠AOB=2R2
AB=10√2*sin(90+C/2)
AB=10√2*cos(C/2)
приравниваем, сокращаем, выносим за скобки и получаем
cos(C/2)*(√2sin(C/2)-1)=0
cos(C/2)=0 √2sin(C/2)-1=0
С=180(либо 0) -не подходит С=90°
ответ : 90°