Если АВ=ВС, тогда угол С=66°. Так как Ск-биссектриса, тогда угол АСК=66:2=33. В треугольнике АКС сумма всех углов, как и всегда 180 градусов, тогда угол АСК=180-66-33=114-33=81° ответ:угол АКС=81°
Kochinev4
25.04.2020
Жил породах вещах входа входящие Аллах о сдал (можешь не обращать на это внимания весь ответ на фото)
Васильев1028
25.04.2020
Ромб ABCD, точка пересечения диагоналей О, К - точка на стороне АВ. АК=2 ВК=8 1- рассмотрим прямоугольный треугольник AOB. У него АВ=10см (т. к. АК+ВК=2+8=10). А катеты АО и ВО примем АО=х, ВО= у 2- из теоремы пифагора (квадрат гипотенузы (АВ^2) равен сумме квадратов катетов (АО^2+ВО^2)) ( X)^2 означает X в квадрате т. е. АВ^2=AO^2+BO^2. подставим нашу замену получим 10^2=x^2+y^2, 100=x^2+y^2 3- рассмотрим прямоугольный треугольник AOK. Его стороны это АК=2, ОК и АО=x в нем тоже по теореме пифагора получаем: AO^2=AK^2+OK^2, подставим значения получим x^2 = 2^2 + OK^2 x^2 = 4 + OK^2 4- рассмотрим прямоугольный треугольник BOK. Его стороны это BК=8, ОК и BО=y в нем тоже по теореме пифагора получаем: BO^2=BK^2+OK^2, подставим значения получим y^2 = 8^2 + OK^2 y^2 =64 + OK^2
Рассмотрим уравнения из пункта 3 и 4 x^2 = 4 + OK^2 y^2 =64 + OK^2 Выразим из каждого OK^2, получим OK^2=x^2-4 OK^2=y^2-64 получаем x^2-4=y^2-64 x^2=y^2-60 Решим теперь систему уравнений x^2=y^2-60 100=x^2+y^2 (уравнение из пункта 2) Подставим полученное x^2 в уравнение из пункта 1, получим систему x^2=y^2-60 100=y^2-60+y^2
x^2=y^2-60 2*y^2=160
x^2=y^2-60 y^2=80 Теперь подставим y^2=80 в первое уравнение системы, получим систему
x^2=80-60 y^2=80
x^2=20 y^2=80 __ x=2 V 5 (два корня из пяти) __ y=4 V 5 (четыре корня из пяти)
ответ: __ __ __ __ Диагонали ромба это АС=2*x = 2*2 V 5 = 4V 5 и BD=2*y= 2*4 V 5 = 8 V 5
Евгений
25.04.2020
1)высота - перпендикуляр, проведенный из вершины геометрической фигуры. Обозначим её АМ. BC - гипотенуза треугольника ABC. Численно равна 30. Пользуясь теоремой Пифагора запишем формулы для каждого из треугольников.
для большого треугольника ABC: AB^2 + AC^2 = BC^2
для треугольника ABM: AB^2 = AM^2 + BM^2
для треугольника AMC: AC^2 = MC^2 + AM^2
подставляем два последних выражения в первое: AM^2 + BM^2 + MC^2 + AM^2 = BC^2
Так как Ск-биссектриса, тогда угол АСК=66:2=33.
В треугольнике АКС сумма всех углов, как и всегда 180 градусов, тогда угол АСК=180-66-33=114-33=81°
ответ:угол АКС=81°