Основанием пирамиды является квадрат со стороной 10 см. Одно боковое ребро перпендикулярно плоскости основания и равно 24 см.
Вычисли площадь боковой поверхности.
Объяснение:
1)S(бок)=S(МВА)+S(МВС)+S(МАD)+S(МСD).
2)ΔМВА=ΔSМВС как прямоугольные по двум катетам⇒S(МВА)=S(МВС)=1/2*24*10=120 (см²).
Найдем МС= МА=√(24²+10²)=√676=26(см)
3)Т.к. прекция ВА⊥AD, то и наклонная МА⊥AD⇒ΔМAD-прямоугольный.
Т.к. прекция ВС⊥СD, то и наклонная МС⊥СD⇒ΔМСD-прямоугольный.
S(МАD)=S(МСD) как площади равных прямоугольных треугольников по катету и гипотенузе .
S(МАD)=S(МСD)=1/2*10*26=130 (см²)
4)S(бок)=2*120+2*130=500 (см²)
В правильной треугольной призме АВСА₁В₁С₁ через сторону АВ нижнего основания и середину ребра СС₁ проведено сечение , составляющие с плоскостью основания угол 30°. Найдите объем призмы, если боковое ребро равно 2b.
Объяснение:
V(призмы)= S(основания)*H, высота H -боковое ребро .
S(основания)=S(прав. треуг)= а²√3/4.
Пусть К-середина СС₁ , СК=2b:2=b .
Проведем СМ⊥АВ , тогда КМ⊥АВ по т. о трех перпендикулярах ⇒∠КМС-линейный угол двугранного между плоскостью сечения и основанием. ∠КМС=30°.
ΔКМС-прямоугольный , tg 30°=KC/CM или 1/√3=b/СМ , СМ=b√3 .
ΔСМВ-прямоугольный , sin60°=СМ/СВ , √3/2=b√3/СВ , СВ=2b.
S(прав. треуг)= (2b)²√3/4=b²√3.
V(призмы)= b²√3*2b=2b³√3 ( ед³)
Поделитесь своими знаниями, ответьте на вопрос:
Вравнобедренном треугольнике abc, сторона bc - основание. найдите угол a, если известно, что ∠b = 77
2) ∠А=С=103°:2=51.5°