Углы у равнобедренной трапеции одинаковы по 45°.
Проведем из вершины трапеции две высоты на большее основание.
Расстояние между основаниями равно меньшему основанию трапеции, то есть 25 см.
Большее основание по условию 41 см.
41-25=16 см
16:2=8 см - Сторона прямоугольного треугольника, образованного при проведении высоты.
В этом треугольнике угол 45°. значит и второй угол прямоугольного треугольника 45°. (180°-90°-45°= 45°).
Так как углы при основаниях треугольника равны, то треугольник равнобедренный.
Высота совпадает с боковой стороной и равняется тоже 8 см.
ответ: высота трапеции 8 см
Чертим ромб АВСD, его стороны по 10см, угол А=30. Диагонали его пересекутся под прямым углом в точке О и этой точкой поделятся пополам. Из точки О проведем перпендикуляр ОН к стороне АВ. ОН и есть радиус вписанной в ромб окружности. Найдем диагональ ромба ВD по теореме косинусов:
BD^2=AB^2+AD^2-2*AB*AD*cosA=100+100-2*10*10*cos30=200-100*√3=27
BD=5,2см ВО=5,2/2=2,6см
По теореме Пифагора АО^2=АВ^2-BO^2=100-6,76=93,24
Сейчас работаем с треугольником АОВ. Его площадь можно найти двумя Отсюда выразим ОН:
ОН=2S/АВ=25/10=2,5см.
ответ: 2,5см.
Поделитесь своими знаниями, ответьте на вопрос:
Периметр равнобедренного треугольника равен 100, а боковая сторона 29. найдите его площадь.
Площадь этого треугольника - половина произведения высоты на основание. Найдем высоту. Высота в этом треугольнике по свойству - то же , что и медиана. Медиана делит основание на 2 части (42:2=21).
Теперь по теореме Пифагора найдем высоту. h===20.
Осталось посчитать площадь.
S=1/2*20*21=210.
ответ: 210.